13 Commits

Author SHA1 Message Date
9c152ebe94 upd gitignore 2025-09-02 10:11:15 +03:00
b8074765e3 Merge branch 'use_schemas' 2025-09-01 23:35:48 +03:00
79ab91c700 Done 2025-09-01 20:54:31 +03:00
b98be22359 Доредачил прошлые arch изменения 2025-09-01 20:22:07 +03:00
fc0b4356da Merge branch 'arch-2' 2025-09-01 20:00:32 +03:00
72fe115a99 main 2025-09-01 19:22:58 +03:00
46a30c32ed Сервисы 2025-09-01 19:20:16 +03:00
5e217c7cce порты 2025-09-01 19:19:28 +03:00
7d2747c8fe rm лишнее 2025-09-01 19:16:23 +03:00
513ff3c144 Реализация для дева с хот релоадом 2025-09-01 19:06:55 +03:00
a0b6e04d99 Правильное отображение имени 2025-09-01 19:01:06 +03:00
47a7344755 streamlit fix 2025-09-01 18:57:39 +03:00
456e9935f0 fix streamlit 2025-09-01 14:08:19 +03:00
53 changed files with 1545 additions and 899 deletions

174
.gitignore vendored Normal file
View File

@@ -0,0 +1,174 @@
# Python
__pycache__
__pycache__/
python_parser/__pycache__/
python_parser/core/__pycache__/
python_parser/adapters/__pycache__/
python_parser/tests/__pycache__/
python_parser/tests/test_core/__pycache__/
python_parser/tests/test_adapters/__pycache__/
python_parser/tests/test_app/__pycache__/
python_parser/app/__pycache__/
python_parser/app/schemas/__pycache__/
python_parser/app/schemas/test_schemas/__pycache__/
python_parser/app/schemas/test_schemas/test_core/__pycache__/
python_parser/app/schemas/test_schemas/test_adapters/__pycache__/
python_parser/app/schemas/test_schemas/test_app/__pycache__/
nin_python_parser
*.py[cod]
*$py.class
*.so
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# Virtual environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# IDE
.vscode/
.idea/
*.swp
*.swo
*~
# OS
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db
Desktop.ini
# Logs
*.log
logs/
log/
# MinIO data and cache
minio_data/
.minio.sys/
*.meta
part.*
# Docker
.dockerignore
docker-compose.override.yml
# Environment variables
.env
.env.local
.env.development.local
.env.test.local
.env.production.local
# Temporary files
*.tmp
*.temp
*.bak
*.backup
*.orig
# Data files (Excel, CSV, etc.)
*.xlsx
*.xls
*.xlsm
*.csv
*.json
data/
uploads/
# Cache directories
.cache/
.pytest_cache/
.coverage
htmlcov/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# pipenv
Pipfile.lock
# poetry
poetry.lock
# Celery
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# Local development
local_settings.py
db.sqlite3
db.sqlite3-journal
# FastAPI
.pytest_cache/
.coverage
htmlcov/
# Streamlit
.streamlit/secrets.toml
# Node.js (if any frontend components)
node_modules/
npm-debug.log*
yarn-debug.log*
yarn-error.log*
__pycache__/

41
QUICK_START.md Normal file
View File

@@ -0,0 +1,41 @@
# 🚀 Быстрый запуск проекта
## 1. Запуск всех сервисов
```bash
docker compose up -d
```
## 2. Проверка статуса
```bash
docker compose ps
```
## 3. Доступ к сервисам
- **FastAPI**: http://localhost:8000
- **Streamlit**: http://localhost:8501
- **MinIO Console**: http://localhost:9001
- **MinIO API**: http://localhost:9000
## 4. Остановка
```bash
docker compose down
```
## 5. Просмотр логов
```bash
# Все сервисы
docker compose logs
# Конкретный сервис
docker compose logs fastapi
docker compose logs streamlit
docker compose logs minio
```
## 6. Пересборка и перезапуск
```bash
docker compose up -d --build
```
---
**Примечание**: При первом запуске Docker будет скачивать образы и собирать контейнеры, это может занять несколько минут.

117
README.md Normal file
View File

@@ -0,0 +1,117 @@
# Python Parser CF - Система анализа данных
Проект состоит из трех основных компонентов:
- **python_parser** - FastAPI приложение для парсинга и обработки данных
- **streamlit_app** - Streamlit приложение для визуализации и анализа
- **minio_data** - хранилище данных MinIO
## 🚀 Быстрый запуск
### Предварительные требования
- Docker и Docker Compose
- Git
### Запуск всех сервисов (продакшн)
```bash
docker compose up -d
```
### Запуск в режиме разработки
```bash
# Автоматический запуск
python start_dev.py
# Или вручную
docker compose -f docker-compose.dev.yml up -d
```
**Режим разработки** позволяет:
- Автоматически перезагружать Streamlit при изменении кода
- Монтировать исходный код напрямую в контейнер
- Видеть изменения без пересборки контейнеров
### Доступ к сервисам
- **FastAPI**: http://localhost:8000
- **Streamlit**: http://localhost:8501
- **MinIO Console**: http://localhost:9001
- **MinIO API**: http://localhost:9000
### Остановка сервисов
```bash
docker-compose down
```
## 📁 Структура проекта
```
python_parser_cf/
├── python_parser/ # FastAPI приложение
│ ├── app/ # Основной код приложения
│ ├── adapters/ # Адаптеры для парсеров
│ ├── core/ # Основная бизнес-логика
│ ├── data/ # Тестовые данные
│ └── Dockerfile # Docker образ для FastAPI
├── streamlit_app/ # Streamlit приложение
│ ├── streamlit_app.py # Основной файл приложения
│ ├── requirements.txt # Зависимости Python
│ ├── .streamlit/ # Конфигурация Streamlit
│ └── Dockerfile # Docker образ для Streamlit
├── minio_data/ # Данные для MinIO
├── docker-compose.yml # Конфигурация всех сервисов
└── README.md # Документация
```
## 🔧 Конфигурация
### Переменные окружения
Все сервисы используют следующие переменные окружения:
- `MINIO_ENDPOINT` - адрес MinIO сервера
- `MINIO_ACCESS_KEY` - ключ доступа к MinIO
- `MINIO_SECRET_KEY` - секретный ключ MinIO
- `MINIO_SECURE` - использование SSL/TLS
- `MINIO_BUCKET` - имя bucket'а для данных
### Порты
- **8000** - FastAPI
- **8501** - Streamlit
- **9000** - MinIO API
- **9001** - MinIO Console
## 📊 Использование
1. **Запустите все сервисы**: `docker-compose up -d`
2. **Откройте Streamlit**: http://localhost:8501
3. **Выберите тип данных** для анализа
4. **Просматривайте результаты** в интерактивном интерфейсе
## 🛠️ Разработка
### Режим разработки (рекомендуется)
```bash
# Запуск режима разработки
python start_dev.py
# Остановка
docker compose -f docker-compose.dev.yml down
# Возврат к продакшн режиму
python start_prod.py
```
### Локальная разработка FastAPI
```bash
cd python_parser
pip install -r requirements.txt
uvicorn app.main:app --reload
```
### Локальная разработка Streamlit
```bash
cd streamlit_app
pip install -r requirements.txt
streamlit run streamlit_app.py
```
## 📝 Лицензия
Проект разработан для внутреннего использования.

58
docker-compose.dev.yml Normal file
View File

@@ -0,0 +1,58 @@
services:
minio:
image: minio/minio:latest
container_name: svodka_minio_dev
ports:
- "9000:9000" # API порт
- "9001:9001" # Консоль порт
environment:
MINIO_ROOT_USER: minioadmin
MINIO_ROOT_PASSWORD: minioadmin
command: server /data --console-address ":9001"
volumes:
- ./minio_data:/data
restart: unless-stopped
fastapi:
build: ./python_parser
container_name: svodka_fastapi_dev
ports:
- "8000:8000"
environment:
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
depends_on:
- minio
restart: unless-stopped
streamlit:
image: python:3.11-slim
container_name: svodka_streamlit_dev
ports:
- "8501:8501"
environment:
- API_BASE_URL=http://fastapi:8000
- API_PUBLIC_URL=http://localhost:8000
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
volumes:
# Монтируем исходный код для автоматической перезагрузки
- ./streamlit_app:/app
# Монтируем requirements.txt для установки зависимостей
- ./streamlit_app/requirements.txt:/app/requirements.txt
working_dir: /app
depends_on:
- minio
- fastapi
restart: unless-stopped
command: >
bash -c "
pip install --no-cache-dir -r requirements.txt &&
streamlit run streamlit_app.py --server.port=8501 --server.address=0.0.0.0 --server.runOnSave=true
"

View File

@@ -1,3 +1,5 @@
# Продакшн конфигурация
# Для разработки используйте: docker compose -f docker-compose.dev.yml up -d
services:
minio:
image: minio/minio:latest
@@ -10,11 +12,11 @@ services:
MINIO_ROOT_PASSWORD: minioadmin
command: server /data --console-address ":9001"
volumes:
- minio_data:/data
- ./minio_data:/data
restart: unless-stopped
fastapi:
build: .
build: ./python_parser
container_name: svodka_fastapi
ports:
- "8000:8000"
@@ -28,5 +30,20 @@ services:
- minio
restart: unless-stopped
volumes:
minio_data:
streamlit:
build: ./streamlit_app
container_name: svodka_streamlit
ports:
- "8501:8501"
environment:
- API_BASE_URL=http://fastapi:8000
- API_PUBLIC_URL=http://localhost:8000
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
depends_on:
- minio
- fastapi
restart: unless-stopped

View File

@@ -1,28 +0,0 @@
[server]
port = 8501
address = "localhost"
headless = false
enableCORS = false
enableXsrfProtection = false
[browser]
gatherUsageStats = false
serverAddress = "localhost"
serverPort = 8501
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
secondaryBackgroundColor = "#F0F2F6"
textColor = "#262730"
font = "sans serif"
[client]
showErrorDetails = true
caching = true
displayEnabled = true
[runner]
magicEnabled = true
installTracer = false
fixMatplotlib = true

View File

@@ -1 +0,0 @@
web: python /app/run_stand.py

View File

@@ -1,66 +0,0 @@
# 🚀 Быстрый старт NIN Excel Parsers API
## 🐳 Запуск через Docker (рекомендуется)
### Вариант 1: MinIO + FastAPI в Docker
```bash
# Запуск всех сервисов
docker-compose up -d --build
# Проверка
curl http://localhost:8000
curl http://localhost:9001
```
### Вариант 2: Только MinIO в Docker
```bash
# Запуск только MinIO
docker-compose up -d minio
# Проверка
curl http://localhost:9001
```
## 🖥️ Запуск FastAPI локально
```bash
# Если MinIO в Docker
python run_dev.py
# Проверка
curl http://localhost:8000
```
## 📊 Запуск Streamlit
```bash
# В отдельном терминале
python run_streamlit.py
```
## 🌐 Доступные URL
- **FastAPI API**: http://localhost:8000
- **API документация**: http://localhost:8000/docs
- **MinIO консоль**: http://localhost:9001
- **Streamlit интерфейс**: http://localhost:8501
## 🛑 Остановка
```bash
# Остановка Docker
docker-compose down
# Остановка Streamlit
# Ctrl+C в терминале
```
## 🔧 Диагностика
```bash
# Проверка состояния
python check_services.py
# Просмотр логов Docker
docker-compose logs
```

View File

@@ -1,197 +0,0 @@
# NIN Excel Parsers API
API для парсинга Excel отчетов нефтеперерабатывающих заводов (НПЗ) с использованием FastAPI и MinIO для хранения данных.
## 🚀 Быстрый запуск
### **Вариант 1: Только MinIO в Docker + FastAPI локально**
```bash
# Запуск MinIO в Docker
docker-compose up -d minio
# Запуск FastAPI локально
python run_dev.py
# В отдельном терминале запуск Streamlit
python run_streamlit.py
```
### **Вариант 2: MinIO + FastAPI в Docker + Streamlit локально**
```bash
# Запуск MinIO и FastAPI в Docker
docker-compose up -d
# В отдельном терминале запуск Streamlit
python run_streamlit.py
```
### **Вариант 3: Только MinIO в Docker**
```bash
# Запуск только MinIO
docker-compose up -d minio
```
## 📋 Описание сервисов
- **MinIO** (порт 9000-9001): S3-совместимое хранилище для данных
- **FastAPI** (порт 8000): API сервер для парсинга Excel файлов
- **Streamlit** (порт 8501): Веб-интерфейс для демонстрации API
## 🔧 Диагностика
Для проверки состояния всех сервисов:
```bash
python check_services.py
```
## 🛑 Остановка
### Остановка Docker сервисов:
```bash
# Все сервисы
docker-compose down
# Только MinIO
docker-compose stop minio
```
### Остановка Streamlit:
```bash
# Нажмите Ctrl+C в терминале с Streamlit
```
## 📁 Структура проекта
```
python_parser/
├── app/ # FastAPI приложение
│ ├── main.py # Основной файл приложения
│ └── schemas/ # Pydantic схемы
├── core/ # Бизнес-логика
│ ├── models.py # Модели данных
│ ├── ports.py # Интерфейсы (порты)
│ └── services.py # Сервисы
├── adapters/ # Адаптеры для внешних систем
│ ├── storage.py # MinIO адаптер
│ └── parsers/ # Парсеры Excel файлов
├── data/ # Тестовые данные
├── docker-compose.yml # Docker Compose конфигурация
├── Dockerfile # Docker образ для FastAPI
├── run_dev.py # Запуск FastAPI локально
├── run_streamlit.py # Запуск Streamlit
└── check_services.py # Диагностика сервисов
```
## 🔍 Доступные эндпоинты
- **GET /** - Информация об API
- **GET /docs** - Swagger документация
- **POST /svodka_pm/upload-zip** - Загрузка сводок ПМ
- **POST /svodka_ca/upload-zip** - Загрузка сводок ЦА
- **POST /monitoring_fuel/upload-zip** - Загрузка мониторинга топлива
- **GET /svodka_pm/data** - Получение данных сводок ПМ
- **GET /svodka_ca/data** - Получение данных сводок ЦА
- **GET /monitoring_fuel/data** - Получение данных мониторинга топлива
## 📊 Поддерживаемые типы отчетов
1. **svodka_pm** - Сводки по переработке нефти (ПМ)
2. **svodka_ca** - Сводки по переработке нефти (ЦА)
3. **monitoring_fuel** - Мониторинг топлива
## 🐳 Docker команды
### Сборка и запуск:
```bash
# Все сервисы
docker-compose up -d --build
# Только MinIO
docker-compose up -d minio
# Только FastAPI (требует MinIO)
docker-compose up -d fastapi
```
### Просмотр логов:
```bash
# Все сервисы
docker-compose logs
# Конкретный сервис
docker-compose logs fastapi
docker-compose logs minio
```
### Остановка:
```bash
docker-compose down
```
## 🔧 Устранение неполадок
### Проблема: "Streamlit не может подключиться к FastAPI"
**Симптомы:**
- Streamlit открывается, но показывает "API недоступен по адресу http://localhost:8000"
- FastAPI не отвечает на порту 8000
**Решения:**
1. **Проверьте порты:**
```bash
# Windows
netstat -an | findstr :8000
# Linux/Mac
netstat -an | grep :8000
```
2. **Перезапустите FastAPI:**
```bash
# Остановите текущий процесс (Ctrl+C)
python run_dev.py
```
3. **Проверьте логи Docker:**
```bash
docker-compose logs fastapi
```
### Проблема: "MinIO недоступен"
**Решения:**
1. Запустите Docker Desktop
2. Проверьте статус контейнера: `docker ps`
3. Перезапустите MinIO: `docker-compose restart minio`
### Проблема: "Порт уже занят"
**Решения:**
1. Найдите процесс: `netstat -ano | findstr :8000`
2. Остановите процесс: `taskkill /PID <номер_процесса>`
3. Или используйте другой порт в конфигурации
## 🚀 Разработка
### Добавление нового парсера:
1. Создайте файл в `adapters/parsers/`
2. Реализуйте интерфейс `ParserPort`
3. Добавьте в `core/services.py`
4. Создайте схемы в `app/schemas/`
5. Добавьте эндпоинты в `app/main.py`
### Тестирование:
```bash
# Запуск тестов
pytest
# Запуск с покрытием
pytest --cov=.
```
## 📝 Лицензия
Проект разработан для внутреннего использования НИН.

View File

@@ -1,186 +0,0 @@
# 🚀 Streamlit Demo для NIN Excel Parsers API
## Описание
Streamlit приложение для демонстрации работы всех API эндпоинтов NIN Excel Parsers. Предоставляет удобный веб-интерфейс для тестирования функциональности парсеров.
## Возможности
- 📤 **Загрузка файлов**: Загрузка ZIP архивов и Excel файлов
- 📊 **Сводки ПМ**: Работа с плановыми и фактическими данными
- 🏭 **Сводки СА**: Парсинг сводок центрального аппарата
-**Мониторинг топлива**: Анализ данных по топливу
- 📱 **Адаптивный интерфейс**: Удобное использование на всех устройствах
## Установка и запуск
### 1. Установка зависимостей
```bash
pip install -r requirements.txt
```
### 2. Запуск FastAPI сервера
В одном терминале:
```bash
python run_dev.py
```
### 3. Запуск Streamlit приложения
В другом терминале:
```bash
python run_streamlit.py
```
Или напрямую:
```bash
streamlit run streamlit_app.py
```
### 4. Открытие в браузере
Приложение автоматически откроется по адресу: http://localhost:8501
## Конфигурация
### Переменные окружения
```bash
# URL API сервера
export API_BASE_URL="http://localhost:8000"
# Порт Streamlit
export STREAMLIT_PORT="8501"
# Хост Streamlit
export STREAMLIT_HOST="localhost"
```
### Настройки Streamlit
Файл `.streamlit/config.toml` содержит настройки:
- Порт: 8501
- Хост: localhost
- Тема: Кастомная цветовая схема
- Безопасность: Отключены CORS и XSRF для локальной разработки
## Структура приложения
### Вкладки
1. **📤 Загрузка файлов**
- Загрузка сводок ПМ (ZIP)
- Загрузка мониторинга топлива (ZIP)
- Загрузка сводки СА (Excel)
2. **📊 Сводки ПМ**
- Данные по одному ОГ
- Данные по всем ОГ
- Выбор кодов строк и столбцов
3. **🏭 Сводки СА**
- Выбор режимов (план/факт/норматив)
- Выбор таблиц для анализа
4. **⛽ Мониторинг топлива**
- Агрегация по колонкам
- Данные за конкретный месяц
### Боковая панель
- Информация о сервере (PID, CPU, память)
- Список доступных парсеров
- Статус подключения к API
## Использование
### 1. Загрузка файлов
1. Выберите соответствующий тип файла
2. Нажмите "Загрузить"
3. Дождитесь подтверждения загрузки
### 2. Получение данных
1. Выберите нужные параметры (ОГ, коды, столбцы)
2. Нажмите "Получить данные"
3. Результат отобразится в JSON формате
### 3. Мониторинг
- Проверяйте статус API в верхней части
- Следите за логами операций
- Используйте индикаторы загрузки
## Устранение неполадок
### API недоступен
```bash
# Проверьте, запущен ли FastAPI сервер
curl http://localhost:8000/
# Проверьте порт
netstat -an | grep 8000
```
### Streamlit не запускается
```bash
# Проверьте версию Python
python --version
# Переустановите Streamlit
pip uninstall streamlit
pip install streamlit
# Проверьте порт 8501
netstat -an | grep 8501
```
### Ошибки загрузки файлов
- Убедитесь, что файл соответствует формату
- Проверьте размер файла (не более 100MB)
- Убедитесь, что MinIO запущен
## Разработка
### Добавление новых функций
1. Создайте новую вкладку в `streamlit_app.py`
2. Добавьте соответствующие API вызовы
3. Обновите боковую панель при необходимости
### Кастомизация темы
Отредактируйте `.streamlit/config.toml`:
```toml
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
# ... другие цвета
```
### Добавление новых парсеров
1. Создайте парсер в `adapters/parsers/`
2. Добавьте в `main.py`
3. Обновите Streamlit интерфейс
## Безопасность
⚠️ **Внимание**: Приложение настроено для локальной разработки
- CORS отключен
- XSRF защита отключена
- Не используйте в продакшене без дополнительной настройки
## Поддержка
При возникновении проблем:
1. Проверьте логи в терминале
2. Убедитесь, что все сервисы запущены
3. Проверьте конфигурацию
4. Обратитесь к документации API: http://localhost:8000/docs

View File

@@ -0,0 +1,135 @@
# Интеграция схем Pydantic с парсерами
## Обзор
Этот документ описывает решение для устранения дублирования логики между схемами Pydantic и парсерами. Теперь схемы Pydantic являются единым источником правды для определения параметров парсеров.
## Проблема
Ранее в парсерах дублировалась информация о параметрах:
```python
# В парсере
self.register_getter(
name="single_og",
method=self._get_single_og,
required_params=["id", "codes", "columns"], # Дублирование
optional_params=["search"], # Дублирование
description="Получение данных по одному ОГ"
)
# В схеме
class SvodkaPMSingleOGRequest(BaseModel):
id: OGID = Field(...) # Обязательное поле
codes: List[int] = Field(...) # Обязательное поле
columns: List[str] = Field(...) # Обязательное поле
search: Optional[str] = Field(None) # Необязательное поле
```
## Решение
### 1. Утилиты для работы со схемами
Создан модуль `core/schema_utils.py` с функциями:
- `get_required_fields_from_schema()` - извлекает обязательные поля
- `get_optional_fields_from_schema()` - извлекает необязательные поля
- `register_getter_from_schema()` - регистрирует геттер с использованием схемы
- `validate_params_with_schema()` - валидирует параметры с помощью схемы
### 2. Обновленные парсеры
Теперь парсеры используют схемы как единый источник правды:
```python
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды
register_getter_from_schema(
parser_instance=self,
getter_name="single_og",
method=self._get_single_og,
schema_class=SvodkaPMSingleOGRequest,
description="Получение данных по одному ОГ"
)
```
### 3. Валидация параметров
Методы геттеров теперь автоматически валидируют параметры:
```python
def _get_single_og(self, params: dict):
"""Получение данных по одному ОГ"""
# Валидируем параметры с помощью схемы Pydantic
validated_params = validate_params_with_schema(params, SvodkaPMSingleOGRequest)
og_id = validated_params["id"]
codes = validated_params["codes"]
columns = validated_params["columns"]
search = validated_params.get("search")
# ... остальная логика
```
## Преимущества
1. **Единый источник правды** - информация о параметрах хранится только в схемах Pydantic
2. **Автоматическая валидация** - параметры автоматически валидируются с помощью Pydantic
3. **Синхронизация** - изменения в схемах автоматически отражаются в парсерах
4. **Типобезопасность** - использование типов Pydantic обеспечивает типобезопасность
5. **Документация** - Swagger документация автоматически генерируется из схем
## Совместимость
Решение работает с:
- Pydantic v1 (через `__fields__`)
- Pydantic v2 (через `model_fields` и `is_required()`)
## Использование
### Для новых парсеров
1. Создайте схему Pydantic с нужными полями
2. Используйте `register_getter_from_schema()` для регистрации геттера
3. Используйте `validate_params_with_schema()` в методах геттеров
### Для существующих парсеров
1. Убедитесь, что у вас есть соответствующая схема Pydantic
2. Замените ручную регистрацию геттеров на `register_getter_from_schema()`
3. Добавьте валидацию параметров в методы геттеров
## Примеры
### Схема с обязательными и необязательными полями
```python
class ExampleRequest(BaseModel):
required_field: str = Field(..., description="Обязательное поле")
optional_field: Optional[str] = Field(None, description="Необязательное поле")
```
### Регистрация геттера
```python
register_getter_from_schema(
parser_instance=self,
getter_name="example_getter",
method=self._example_method,
schema_class=ExampleRequest,
description="Пример геттера"
)
```
### Валидация в методе
```python
def _example_method(self, params: dict):
validated_params = validate_params_with_schema(params, ExampleRequest)
# validated_params содержит валидированные данные
```
## Заключение
Это решение устраняет дублирование кода и обеспечивает единообразие между API схемами и парсерами. Теперь изменения в схемах автоматически отражаются в парсерах, что упрощает поддержку и развитие системы.

View File

@@ -1,9 +1,11 @@
import pandas as pd
import re
from typing import Dict
import zipfile
from typing import Dict, Tuple
from core.ports import ParserPort
from adapters.pconfig import data_to_json, get_object_by_name
from core.schema_utils import register_getter_from_schema, validate_params_with_schema
from app.schemas.monitoring_fuel import MonitoringFuelTotalRequest, MonitoringFuelMonthRequest
from adapters.pconfig import data_to_json
class MonitoringFuelParser(ParserPort):
@@ -11,71 +13,58 @@ class MonitoringFuelParser(ParserPort):
name = "Мониторинг топлива"
def find_header_row(self, file_path: str, sheet: str, search_value: str = "Установка", max_rows: int = 50) -> int:
"""Определение индекса заголовка в Excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
df_temp = pd.read_excel(
file_path,
sheet_name=sheet,
header=None,
nrows=max_rows
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды
register_getter_from_schema(
parser_instance=self,
getter_name="total_by_columns",
method=self._get_total_by_columns,
schema_class=MonitoringFuelTotalRequest,
description="Агрегация данных по колонкам"
)
# Ищем строку, где хотя бы в одном столбце встречается искомое значение
for idx, row in df_temp.iterrows():
if row.astype(str).str.strip().str.contains(f"^{search_value}$", case=False, regex=True).any():
print(f"Заголовок найден в строке {idx} (Excel: {idx + 1})")
return idx + 1 # возвращаем индекс строки (0-based)
raise ValueError(f"Не найдена строка с заголовком '{search_value}' в первых {max_rows} строках.")
def parse_single(self, file, sheet, header_num=None):
''' Собственно парсер отчетов одного объекта'''
# Автоопределение header_num, если не передан
if header_num is None:
header_num = self.find_header_row(file, sheet, search_value="Установка")
# Читаем весь лист, начиная с найденной строки как заголовок
df_full = pd.read_excel(
file,
sheet_name=sheet,
header=header_num,
usecols=None,
index_col=None
register_getter_from_schema(
parser_instance=self,
getter_name="month_by_code",
method=self._get_month_by_code,
schema_class=MonitoringFuelMonthRequest,
description="Получение данных за конкретный месяц"
)
# === Удаление полностью пустых столбцов ===
df_clean = df_full.replace(r'^\s*$', pd.NA, regex=True) # заменяем пустые строки на NA
df_clean = df_clean.dropna(axis=1, how='all') # удаляем столбцы, где все значения — NA
df_full = df_full.loc[:, df_clean.columns] # оставляем только непустые столбцы
def _get_total_by_columns(self, params: dict):
"""Агрегация данных по колонкам"""
# Валидируем параметры с помощью схемы Pydantic
validated_params = validate_params_with_schema(params, MonitoringFuelTotalRequest)
# === Переименовываем нужные столбцы по позициям ===
if len(df_full.columns) < 2:
raise ValueError("DataFrame должен содержать как минимум 2 столбца.")
columns = validated_params["columns"]
new_columns = df_full.columns.tolist()
# TODO: Переделать под новую архитектуру
df_means, _ = self.aggregate_by_columns(self.df, columns)
return df_means.to_dict(orient='index')
new_columns[0] = 'name'
new_columns[1] = 'normativ'
new_columns[-2] = 'total'
new_columns[-1] = 'total_1'
def _get_month_by_code(self, params: dict):
"""Получение данных за конкретный месяц"""
# Валидируем параметры с помощью схемы Pydantic
validated_params = validate_params_with_schema(params, MonitoringFuelMonthRequest)
df_full.columns = new_columns
month = validated_params["month"]
# Проверяем, что колонка 'name' существует
if 'name' in df_full.columns:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
df_full['id'] = df_full['name'].apply(get_object_by_name)
# TODO: Переделать под новую архитектуру
df_month = self.get_month(self.df, month)
return df_month.to_dict(orient='index')
# Устанавливаем id как индекс
df_full.set_index('id', inplace=True)
print(f"Окончательное количество столбцов: {len(df_full.columns)}")
return df_full
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_monitoring_fuel_files(file_path, params)
return self.df
def parse(self, file_path: str, params: dict) -> dict:
import zipfile
def parse_monitoring_fuel_files(self, zip_path: str, params: dict) -> Dict[str, pd.DataFrame]:
"""Парсинг ZIP архива с файлами мониторинга топлива"""
df_monitorings = {} # ЭТО СЛОВАРЬ ДАТАФРЕЙМОВ, ГДЕ КЛЮЧ - НОМЕР МЕСЯЦА, ЗНАЧЕНИЕ - ДАТАФРЕЙМ
with zipfile.ZipFile(file_path, 'r') as zip_ref:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
for month in range(1, 13):
@@ -103,7 +92,70 @@ class MonitoringFuelParser(ParserPort):
return df_monitorings
def aggregate_by_columns(self, df_dict: Dict[str, pd.DataFrame], columns):
def find_header_row(self, file_path: str, sheet: str, search_value: str = "Установка", max_rows: int = 50) -> int:
"""Определение индекса заголовка в Excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
df_temp = pd.read_excel(
file_path,
sheet_name=sheet,
header=None,
nrows=max_rows,
engine='openpyxl'
)
# Ищем строку, где хотя бы в одном столбце встречается искомое значение
for idx, row in df_temp.iterrows():
if row.astype(str).str.strip().str.contains(f"^{search_value}$", case=False, regex=True).any():
print(f"Заголовок найден в строке {idx} (Excel: {idx + 1})")
return idx + 1 # возвращаем индекс строки (0-based)
raise ValueError(f"Не найдена строка с заголовком '{search_value}' в первых {max_rows} строках.")
def parse_single(self, file, sheet, header_num=None):
''' Собственно парсер отчетов одного объекта'''
# Автоопределение header_num, если не передан
if header_num is None:
header_num = self.find_header_row(file, sheet, search_value="Установка")
# Читаем весь лист, начиная с найденной строки как заголовок
df_full = pd.read_excel(
file,
sheet_name=sheet,
header=header_num,
usecols=None,
index_col=None,
engine='openpyxl'
)
# === Удаление полностью пустых столбцов ===
df_clean = df_full.replace(r'^\s*$', pd.NA, regex=True) # заменяем пустые строки на NA
df_clean = df_clean.dropna(axis=1, how='all') # удаляем столбцы, где все значения — NA
df_full = df_full.loc[:, df_clean.columns] # оставляем только непустые столбцы
# === Переименовываем нужные столбцы по позициям ===
if len(df_full.columns) < 2:
raise ValueError("DataFrame должен содержать как минимум 2 столбца.")
new_columns = df_full.columns.tolist()
new_columns[0] = 'name'
new_columns[1] = 'normativ'
new_columns[-2] = 'total'
new_columns[-1] = 'total_1'
df_full.columns = new_columns
# Проверяем, что колонка 'name' существует
if 'name' in df_full.columns:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
# df_full['id'] = df_full['name'].apply(get_object_by_name) # This line was removed as per new_code
pass # Placeholder for new_code
# Устанавливаем id как индекс
df_full.set_index('id', inplace=True)
print(f"Окончательное количество столбцов: {len(df_full.columns)}")
return df_full
def aggregate_by_columns(self, df_dict: Dict[str, pd.DataFrame], columns: list) -> Tuple[pd.DataFrame, Dict[str, pd.DataFrame]]:
''' Служебная функция. Агрегация данных по среднему по определенным колонкам. '''
all_data = {} # Для хранения полных данных (месяцы) по каждой колонке
means = {} # Для хранения средних
@@ -185,22 +237,3 @@ class MonitoringFuelParser(ParserPort):
total.name = 'mean'
return total, df_combined
def get_value(self, df, params):
mode = params.get("mode", "total")
columns = params.get("columns", None)
month = params.get("month", None)
data = None
if mode == "total":
if not columns:
raise ValueError("Отсутствуют идентификаторы столбцов")
df_means, _ = self.aggregate_by_columns(df, columns)
data = df_means.to_dict(orient='index')
elif mode == "month":
if not month:
raise ValueError("Отсутствуют идентификатор месяца")
df_month = self.get_month(df, month)
data = df_month.to_dict(orient='index')
json_result = data_to_json(data)
return json_result

View File

@@ -2,89 +2,53 @@ import pandas as pd
import numpy as np
from core.ports import ParserPort
from core.schema_utils import register_getter_from_schema, validate_params_with_schema
from app.schemas.svodka_ca import SvodkaCARequest
from adapters.pconfig import get_og_by_name
class SvodkaCAParser(ParserPort):
"""Парсер для сводки СА"""
"""Парсер для сводок СА"""
name = "Сводка СА"
name = "Сводки СА"
def extract_all_tables(self, file_path, sheet_name=0):
"""Извлекает все таблицы из Excel файла"""
df = pd.read_excel(file_path, sheet_name=sheet_name, header=None)
df_filled = df.fillna('')
df_clean = df_filled.astype(str).replace(r'^\s*$', '', regex=True)
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды
register_getter_from_schema(
parser_instance=self,
getter_name="get_data",
method=self._get_data_wrapper,
schema_class=SvodkaCARequest,
description="Получение данных по режимам и таблицам"
)
non_empty_rows = ~(df_clean.eq('').all(axis=1))
non_empty_cols = ~(df_clean.eq('').all(axis=0))
def _get_data_wrapper(self, params: dict):
"""Получение данных по режимам и таблицам"""
# Валидируем параметры с помощью схемы Pydantic
validated_params = validate_params_with_schema(params, SvodkaCARequest)
row_indices = non_empty_rows[non_empty_rows].index.tolist()
col_indices = non_empty_cols[non_empty_cols].index.tolist()
modes = validated_params["modes"]
tables = validated_params["tables"]
if not row_indices or not col_indices:
return []
# TODO: Переделать под новую архитектуру
data_dict = {}
for mode in modes:
data_dict[mode] = self.get_data(self.df, mode, tables)
return self.data_dict_to_json(data_dict)
row_blocks = self._get_contiguous_blocks(row_indices)
col_blocks = self._get_contiguous_blocks(col_indices)
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_svodka_ca(file_path, params)
return self.df
tables = []
for r_start, r_end in row_blocks:
for c_start, c_end in col_blocks:
block = df.iloc[r_start:r_end + 1, c_start:c_end + 1]
if block.empty or block.fillna('').astype(str).replace(r'^\s*$', '', regex=True).eq('').all().all():
continue
def parse_svodka_ca(self, file_path: str, params: dict) -> dict:
"""Парсинг сводки СА"""
# Получаем параметры из params
sheet_name = params.get('sheet_name', 0) # По умолчанию первый лист
inclusion_list = params.get('inclusion_list', {'ТиП', 'Топливо', 'Потери'})
if self._is_header_row(block.iloc[0]):
block.columns = block.iloc[0]
block = block.iloc[1:].reset_index(drop=True)
else:
block = block.reset_index(drop=True)
block.columns = [f"col_{i}" for i in range(block.shape[1])]
tables.append(block)
return tables
def _get_contiguous_blocks(self, indices):
"""Группирует индексы в непрерывные блоки"""
if not indices:
return []
blocks = []
start = indices[0]
for i in range(1, len(indices)):
if indices[i] != indices[i-1] + 1:
blocks.append((start, indices[i-1]))
start = indices[i]
blocks.append((start, indices[-1]))
return blocks
def _is_header_row(self, series):
"""Определяет, похожа ли строка на заголовок"""
series_str = series.astype(str).str.strip()
non_empty = series_str[series_str != '']
if len(non_empty) == 0:
return False
def is_not_numeric(val):
try:
float(val.replace(',', '.'))
return False
except (ValueError, TypeError):
return True
not_numeric_count = non_empty.apply(is_not_numeric).sum()
return not_numeric_count / len(non_empty) > 0.6
def _get_og_by_name(self, name):
"""Функция для получения ID по имени (упрощенная версия)"""
# Упрощенная версия - возвращаем имя как есть
if not name or not isinstance(name, str):
return None
return name.strip()
def parse_sheet(self, file_path, sheet_name, inclusion_list):
"""Собственно функция парсинга отчета СА"""
# === Извлечение и фильтрация ===
tables = self.extract_all_tables(file_path, sheet_name)
@@ -190,76 +154,185 @@ class SvodkaCAParser(ParserPort):
else:
return None
def parse(self, file_path: str, params: dict) -> dict:
"""Парсинг файла сводки СА"""
# === Точка входа. Нужно выгрузить три таблицы: План, Факт и Норматив ===
# Выгружаем План в df_ca_plan
inclusion_list_plan = {
"ТиП, %",
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн**",
"в т.ч. Идентифицированные безвозвратные потери, %**",
"в т.ч. Неидентифицированные потери, тонн**",
"в т.ч. Неидентифицированные потери, %**"
}
def extract_all_tables(self, file_path, sheet_name=0):
"""Извлечение всех таблиц из Excel файла"""
df = pd.read_excel(file_path, sheet_name=sheet_name, header=None, engine='openpyxl')
df_filled = df.fillna('')
df_clean = df_filled.astype(str).replace(r'^\s*$', '', regex=True)
df_ca_plan = self.parse_sheet(file_path, 'План', inclusion_list_plan) # ЭТО ДАТАФРЕЙМ ПЛАНА В СВОДКЕ ЦА
print(f"\n--- Объединённый и отсортированный План: {df_ca_plan.shape} ---")
non_empty_rows = ~(df_clean.eq('').all(axis=1))
non_empty_cols = ~(df_clean.eq('').all(axis=0))
# Выгружаем Факт
inclusion_list_fact = {
"ТиП, %",
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн",
"в т.ч. Идентифицированные безвозвратные потери, %",
"в т.ч. Неидентифицированные потери, тонн",
"в т.ч. Неидентифицированные потери, %"
}
row_indices = non_empty_rows[non_empty_rows].index.tolist()
col_indices = non_empty_cols[non_empty_cols].index.tolist()
df_ca_fact = self.parse_sheet(file_path, 'Факт', inclusion_list_fact) # ЭТО ДАТАФРЕЙМ ФАКТА В СВОДКЕ ЦА
print(f"\n--- Объединённый и отсортированный Факт: {df_ca_fact.shape} ---")
if not row_indices or not col_indices:
return []
# Выгружаем План в df_ca_normativ
inclusion_list_normativ = {
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн**",
"в т.ч. Идентифицированные безвозвратные потери, %**",
"в т.ч. Неидентифицированные потери, тонн**",
"в т.ч. Неидентифицированные потери, %**"
}
row_blocks = self._get_contiguous_blocks(row_indices)
col_blocks = self._get_contiguous_blocks(col_indices)
# ЭТО ДАТАФРЕЙМ НОРМАТИВА В СВОДКЕ ЦА
df_ca_normativ = self.parse_sheet(file_path, 'Норматив', inclusion_list_normativ)
tables = []
for r_start, r_end in row_blocks:
for c_start, c_end in col_blocks:
block = df.iloc[r_start:r_end + 1, c_start:c_end + 1]
if block.empty or block.fillna('').astype(str).replace(r'^\s*$', '', regex=True).eq('').all().all():
continue
print(f"\n--- Объединённый и отсортированный Норматив: {df_ca_normativ.shape} ---")
if self._is_header_row(block.iloc[0]):
block.columns = block.iloc[0]
block = block.iloc[1:].reset_index(drop=True)
else:
block = block.reset_index(drop=True)
block.columns = [f"col_{i}" for i in range(block.shape[1])]
df_dict = {
"plan": df_ca_plan,
"fact": df_ca_fact,
"normativ": df_ca_normativ
}
return df_dict
tables.append(block)
return tables
def _get_contiguous_blocks(self, indices):
"""Группирует индексы в непрерывные блоки"""
if not indices:
return []
blocks = []
start = indices[0]
for i in range(1, len(indices)):
if indices[i] != indices[i-1] + 1:
blocks.append((start, indices[i-1]))
start = indices[i]
blocks.append((start, indices[-1]))
return blocks
def _is_header_row(self, series):
"""Определяет, похожа ли строка на заголовок"""
series_str = series.astype(str).str.strip()
non_empty = series_str[series_str != '']
if len(non_empty) == 0:
return False
def is_not_numeric(val):
try:
float(val.replace(',', '.'))
return False
except (ValueError, TypeError):
return True
not_numeric_count = non_empty.apply(is_not_numeric).sum()
return not_numeric_count / len(non_empty) > 0.6
def _get_og_by_name(self, name):
"""Функция для получения ID по имени (упрощенная версия)"""
# Упрощенная версия - возвращаем имя как есть
if not name or not isinstance(name, str):
return None
return name.strip()
def parse_sheet(self, file_path: str, sheet_name: str, inclusion_list: set) -> pd.DataFrame:
"""Парсинг листа Excel"""
# === Извлечение и фильтрация ===
tables = self.extract_all_tables(file_path, sheet_name)
# Фильтруем таблицы: оставляем только те, где первая строка содержит нужные заголовки
filtered_tables = []
for table in tables:
if table.empty:
continue
first_row_values = table.iloc[0].astype(str).str.strip().tolist()
if any(val in inclusion_list for val in first_row_values):
filtered_tables.append(table)
tables = filtered_tables
# === Итоговый список таблиц датафреймов ===
result_list = []
for table in tables:
if table.empty:
continue
# Получаем первую строку (до удаления)
first_row_values = table.iloc[0].astype(str).str.strip().tolist()
# Находим, какой элемент из inclusion_list присутствует
matched_key = None
for val in first_row_values:
if val in inclusion_list:
matched_key = val
break # берём первый совпадающий заголовок
if matched_key is None:
continue # на всякий случай (хотя уже отфильтровано)
# Удаляем первую строку (заголовок) и сбрасываем индекс
df_cleaned = table.iloc[1:].copy().reset_index(drop=True)
# Пропускаем, если таблица пустая
if df_cleaned.empty:
continue
# Первая строка становится заголовком
new_header = df_cleaned.iloc[0] # извлекаем первую строку как потенциальные названия столбцов
# Преобразуем заголовок: только первый столбец может быть заменён на "name"
cleaned_header = []
# Обрабатываем первый столбец отдельно
first_item = new_header.iloc[0] if isinstance(new_header, pd.Series) else new_header[0]
first_item_str = str(first_item).strip() if pd.notna(first_item) else ""
if first_item_str == "" or first_item_str == "nan":
cleaned_header.append("name")
else:
cleaned_header.append(first_item_str)
# Остальные столбцы добавляем без изменений (или с минимальной очисткой)
for item in new_header[1:]:
# Опционально: приводим к строке и убираем лишние пробелы, но не заменяем на "name"
item_str = str(item).strip() if pd.notna(item) else ""
cleaned_header.append(item_str)
# Применяем очищенные названия столбцов
df_cleaned = df_cleaned[1:] # удаляем строку с заголовком
df_cleaned.columns = cleaned_header
df_cleaned = df_cleaned.reset_index(drop=True)
if matched_key.endswith('**'):
cleaned_key = matched_key[:-2] # удаляем последние **
else:
cleaned_key = matched_key
# Добавляем новую колонку с именем параметра
df_cleaned["table"] = cleaned_key
# Проверяем, что колонка 'name' существует
if 'name' not in df_cleaned.columns:
print(
f"Внимание: колонка 'name' отсутствует в таблице для '{matched_key}'. Пропускаем добавление 'id'.")
continue # или обработать по-другому
else:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
df_cleaned['id'] = df_cleaned['name'].apply(get_og_by_name)
# Удаляем строки, где id — None, NaN или пустой
df_cleaned = df_cleaned.dropna(subset=['id']) # dropna удаляет NaN
# Дополнительно: удаляем None (если не поймал dropna)
df_cleaned = df_cleaned[df_cleaned['id'].notna() & (df_cleaned['id'].astype(str) != 'None')]
# Добавляем в словарь
result_list.append(df_cleaned)
# === Объединение и сортировка по id (индекс) и table ===
if result_list:
combined_df = pd.concat(result_list, axis=0)
# Сортируем по индексу (id) и по столбцу 'table'
combined_df = combined_df.sort_values(by=['id', 'table'], axis=0)
# Устанавливаем id как индекс
# combined_df.set_index('id', inplace=True)
return combined_df
else:
return None
def data_dict_to_json(self, data_dict):
''' Служебная функция для парсинга словаря в json. '''
@@ -308,17 +381,3 @@ class SvodkaCAParser(ParserPort):
filtered_df = df[df['table'].isin(table_values)].copy()
result_dict = {key: group for key, group in filtered_df.groupby('table')}
return result_dict
def get_value(self, df: pd.DataFrame, params: dict):
modes = params.get("modes")
tables = params.get("tables")
if not isinstance(modes, list):
raise ValueError("Поле 'modes' должно быть списком")
if not isinstance(tables, list):
raise ValueError("Поле 'tables' должно быть списком")
# Собираем данные
data_dict = {}
for mode in modes:
data_dict[mode] = self.get_data(df, mode, tables)
return self.data_dict_to_json(data_dict)

View File

@@ -1,6 +1,8 @@
import pandas as pd
from core.ports import ParserPort
from core.schema_utils import register_getter_from_schema, validate_params_with_schema
from app.schemas.svodka_pm import SvodkaPMSingleOGRequest, SvodkaPMTotalOGsRequest
from adapters.pconfig import OG_IDS, replace_id_in_path, data_to_json
@@ -9,6 +11,57 @@ class SvodkaPMParser(ParserPort):
name = "Сводки ПМ"
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды
register_getter_from_schema(
parser_instance=self,
getter_name="single_og",
method=self._get_single_og,
schema_class=SvodkaPMSingleOGRequest,
description="Получение данных по одному ОГ"
)
register_getter_from_schema(
parser_instance=self,
getter_name="total_ogs",
method=self._get_total_ogs,
schema_class=SvodkaPMTotalOGsRequest,
description="Получение данных по всем ОГ"
)
def _get_single_og(self, params: dict):
"""Получение данных по одному ОГ"""
# Валидируем параметры с помощью схемы Pydantic
validated_params = validate_params_with_schema(params, SvodkaPMSingleOGRequest)
og_id = validated_params["id"]
codes = validated_params["codes"]
columns = validated_params["columns"]
search = validated_params.get("search")
# Здесь нужно получить DataFrame из self.df, но пока используем старую логику
# TODO: Переделать под новую архитектуру
return self.get_svodka_og(self.df, og_id, codes, columns, search)
def _get_total_ogs(self, params: dict):
"""Получение данных по всем ОГ"""
# Валидируем параметры с помощью схемы Pydantic
validated_params = validate_params_with_schema(params, SvodkaPMTotalOGsRequest)
codes = validated_params["codes"]
columns = validated_params["columns"]
search = validated_params.get("search")
# TODO: Переделать под новую архитектуру
return self.get_svodka_total(self.df, codes, columns, search)
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_svodka_pm_files(file_path, params)
return self.df
def find_header_row(self, file: str, sheet: str, search_value: str = "Итого", max_rows: int = 50) -> int:
"""Определения индекса заголовка в excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
@@ -16,7 +69,8 @@ class SvodkaPMParser(ParserPort):
file,
sheet_name=sheet,
header=None,
nrows=max_rows
nrows=max_rows,
engine='openpyxl'
)
# Ищем строку, где хотя бы в одном столбце встречается искомое значение
@@ -40,6 +94,7 @@ class SvodkaPMParser(ParserPort):
header=header_num,
usecols=None,
nrows=2,
engine='openpyxl'
)
if df_probe.shape[0] == 0:
@@ -61,7 +116,8 @@ class SvodkaPMParser(ParserPort):
sheet_name=sheet,
header=header_num,
usecols=None,
index_col=None
index_col=None,
engine='openpyxl'
)
if indicator_col_name not in df_full.columns:
@@ -99,25 +155,25 @@ class SvodkaPMParser(ParserPort):
# Проверяем, является ли колонка пустой/некорректной
is_empty_or_unnamed = col_str.startswith('Unnamed') or col_str == '' or col_str.lower() == 'nan'
# Проверяем, начинается ли на "Итого"
if col_str.startswith('Итого'):
current_name = 'Итого'
last_good_name = current_name # обновляем last_good_name
new_columns.append(current_name)
elif is_empty_or_unnamed:
# Используем последнее хорошее имя
if is_empty_or_unnamed:
# Если это пустая колонка, используем последнее хорошее имя
if last_good_name:
new_columns.append(last_good_name)
else:
# Имя, полученное из exel
# Если нет хорошего имени, пропускаем
continue
else:
# Это хорошая колонка
last_good_name = col_str
new_columns.append(col_str)
# Применяем новые заголовки
df_final.columns = new_columns
print(f"Окончательное количество столбцов: {len(df_final.columns)}")
return df_final
def parse(self, file_path: str, params: dict) -> dict:
def parse_svodka_pm_files(self, zip_path: str, params: dict) -> dict:
"""Парсинг ZIP архива со сводками ПМ"""
import zipfile
pm_dict = {
"facts": {},
@@ -125,7 +181,7 @@ class SvodkaPMParser(ParserPort):
}
excel_fact_template = 'svodka_fact_pm_ID.xlsm'
excel_plan_template = 'svodka_plan_pm_ID.xlsx'
with zipfile.ZipFile(file_path, 'r') as zip_ref:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
for name, id in OG_IDS.items():
if id == 'BASH':
@@ -155,9 +211,9 @@ class SvodkaPMParser(ParserPort):
return pm_dict
def get_svodka_value(self, df_svodka, id, code, search_value=None):
''' Служебная функция для простой выборке по сводке '''
row_index = id
def get_svodka_value(self, df_svodka, code, search_value, search_value_filter=None):
''' Служебная функция получения значения по коду и столбцу '''
row_index = code
mask_value = df_svodka.iloc[0] == code
if search_value is None:
@@ -254,22 +310,4 @@ class SvodkaPMParser(ParserPort):
return total_result
def get_value(self, df, params):
og_id = params.get("id")
codes = params.get("codes")
columns = params.get("columns")
search = params.get("search")
mode = params.get("mode", "total")
if not isinstance(codes, list):
raise ValueError("Поле 'codes' должно быть списком")
if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
data = None
if mode == "single":
if not og_id:
raise ValueError("Отсутствует идентификатор ОГ")
data = self.get_svodka_og(df, og_id, codes, columns, search)
elif mode == "total":
data = self.get_svodka_total(df, codes, columns, search)
json_result = data_to_json(data)
return json_result
# Убираем старый метод get_value, так как он теперь в базовом классе

View File

@@ -96,6 +96,54 @@ async def get_available_parsers():
return {"parsers": parsers}
@app.get("/parsers/{parser_name}/getters", tags=["Общее"],
summary="Информация о геттерах парсера",
description="Возвращает информацию о доступных геттерах для указанного парсера",
responses={
200: {
"content": {
"application/json": {
"example": {
"parser": "svodka_pm",
"getters": {
"single_og": {
"required_params": ["id", "codes", "columns"],
"optional_params": ["search"],
"description": "Получение данных по одному ОГ"
},
"total_ogs": {
"required_params": ["codes", "columns"],
"optional_params": ["search"],
"description": "Получение данных по всем ОГ"
}
}
}
}
}
},
404: {
"description": "Парсер не найден"
}
})
async def get_parser_getters(parser_name: str):
"""Получение информации о геттерах парсера"""
if parser_name not in PARSERS:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Парсер '{parser_name}' не найден"
)
parser_class = PARSERS[parser_name]
parser_instance = parser_class()
getters_info = parser_instance.get_available_getters()
return {
"parser": parser_name,
"getters": getters_info
}
@app.get("/server-info", tags=["Общее"],
summary="Информация о сервере",
response_model=ServerInfoResponse,)
@@ -352,40 +400,40 @@ async def get_svodka_pm_total_ogs(
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# @app.post("/svodka_pm/get_data", tags=[SvodkaPMParser.name])
# async def get_svodka_pm_data(
# request_data: dict
# ):
# report_service = get_report_service()
# """
# Получение данных из отчета сводки факта СарНПЗ
@app.post("/svodka_pm/get_data", tags=[SvodkaPMParser.name])
async def get_svodka_pm_data(
request_data: dict
):
report_service = get_report_service()
"""
Получение данных из отчета сводки факта СарНПЗ
# - indicator_id: ID индикатора
# - code: Код для поиска
# - search_value: Опциональное значение для поиска
# """
# try:
# # Создаем запрос
# request = DataRequest(
# report_type='svodka_pm',
# get_params=request_data
# )
- indicator_id: ID индикатора
- code: Код для поиска
- search_value: Опциональное значение для поиска
"""
try:
# Создаем запрос
request = DataRequest(
report_type='svodka_pm',
get_params=request_data
)
# # Получаем данные
# result = report_service.get_data(request)
# Получаем данные
result = report_service.get_data(request)
# if result.success:
# return {
# "success": True,
# "data": result.data
# }
# else:
# raise HTTPException(status_code=404, detail=result.message)
if result.success:
return {
"success": True,
"data": result.data
}
else:
raise HTTPException(status_code=404, detail=result.message)
# except HTTPException:
# raise
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
@app.post("/svodka_ca/upload", tags=[SvodkaCAParser.name],
@@ -562,38 +610,38 @@ async def get_svodka_ca_data(
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# @app.post("/monitoring_fuel/get_data", tags=[MonitoringFuelParser.name])
# async def get_monitoring_fuel_data(
# request_data: dict
# ):
# report_service = get_report_service()
# """
# Получение данных из отчета мониторинга топлива
@app.post("/monitoring_fuel/get_data", tags=[MonitoringFuelParser.name])
async def get_monitoring_fuel_data(
request_data: dict
):
report_service = get_report_service()
"""
Получение данных из отчета мониторинга топлива
# - column: Название колонки для агрегации (normativ, total, total_svod)
# """
# try:
# # Создаем запрос
# request = DataRequest(
# report_type='monitoring_fuel',
# get_params=request_data
# )
- column: Название колонки для агрегации (normativ, total, total_svod)
"""
try:
# Создаем запрос
request = DataRequest(
report_type='monitoring_fuel',
get_params=request_data
)
# # Получаем данные
# result = report_service.get_data(request)
# Получаем данные
result = report_service.get_data(request)
# if result.success:
# return {
# "success": True,
# "data": result.data
# }
# else:
# raise HTTPException(status_code=404, detail=result.message)
if result.success:
return {
"success": True,
"data": result.data
}
else:
raise HTTPException(status_code=404, detail=result.message)
# except HTTPException:
# raise
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# @app.post("/monitoring_fuel/upload_directory", tags=[MonitoringFuelParser.name])

View File

@@ -2,28 +2,93 @@
Порты (интерфейсы) для hexagonal architecture
"""
from abc import ABC, abstractmethod
from typing import Optional
from typing import Optional, Dict, List, Any, Callable
import pandas as pd
class ParserPort(ABC):
"""Интерфейс для парсеров"""
"""Интерфейс для парсеров с поддержкой множественных геттеров"""
def __init__(self):
"""Инициализация с пустым словарем геттеров"""
self.getters: Dict[str, Dict[str, Any]] = {}
self._register_default_getters()
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию - переопределяется в наследниках"""
pass
def register_getter(self, name: str, method: Callable, required_params: List[str],
optional_params: List[str] = None, description: str = ""):
"""
Регистрация нового геттера
Args:
name: Имя геттера
method: Метод для выполнения
required_params: Список обязательных параметров
optional_params: Список необязательных параметров
description: Описание геттера
"""
if optional_params is None:
optional_params = []
self.getters[name] = {
"method": method,
"required_params": required_params,
"optional_params": optional_params,
"description": description
}
def get_available_getters(self) -> Dict[str, Dict[str, Any]]:
"""Получение списка доступных геттеров с их описанием"""
return {
name: {
"required_params": info["required_params"],
"optional_params": info["optional_params"],
"description": info["description"]
}
for name, info in self.getters.items()
}
# Добавить схему
def get_value(self, getter_name: str, params: Dict[str, Any]):
"""
Получение значения через указанный геттер
Args:
getter_name: Имя геттера
params: Параметры для геттера
Returns:
Результат выполнения геттера
Raises:
ValueError: Если геттер не найден или параметры неверны
"""
if getter_name not in self.getters:
available = list(self.getters.keys())
raise ValueError(f"Геттер '{getter_name}' не найден. Доступные: {available}")
getter_info = self.getters[getter_name]
required = getter_info["required_params"]
# Проверка обязательных параметров
missing = [p for p in required if p not in params]
if missing:
raise ValueError(f"Отсутствуют обязательные параметры для геттера '{getter_name}': {missing}")
# Вызов метода геттера
try:
return getter_info["method"](params)
except Exception as e:
raise ValueError(f"Ошибка выполнения геттера '{getter_name}': {str(e)}")
@abstractmethod
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
pass
@abstractmethod
def get_value(self, df: pd.DataFrame, params: dict):
"""Получение значения из DataFrame по параметрам"""
pass
# @abstractmethod
# def get_schema(self) -> dict:
# """Возвращает схему входных параметров для парсера"""
# pass
class StoragePort(ABC):
"""Интерфейс для хранилища данных"""

View File

@@ -0,0 +1,140 @@
"""
Упрощенные утилиты для работы со схемами Pydantic
"""
from typing import List, Dict, Any, Type
from pydantic import BaseModel
import inspect
def get_required_fields_from_schema(schema_class: Type[BaseModel]) -> List[str]:
"""
Извлекает список обязательных полей из схемы Pydantic
Args:
schema_class: Класс схемы Pydantic
Returns:
Список имен обязательных полей
"""
required_fields = []
# Используем model_fields для Pydantic v2 или __fields__ для v1
if hasattr(schema_class, 'model_fields'):
fields = schema_class.model_fields
else:
fields = schema_class.__fields__
for field_name, field_info in fields.items():
# В Pydantic v2 есть метод is_required()
if hasattr(field_info, 'is_required'):
if field_info.is_required():
required_fields.append(field_name)
elif hasattr(field_info, 'required'):
if field_info.required:
required_fields.append(field_name)
else:
# Fallback для старых версий - проверяем наличие default
has_default = False
if hasattr(field_info, 'default'):
has_default = field_info.default is not ...
elif hasattr(field_info, 'default_factory'):
has_default = field_info.default_factory is not None
if not has_default:
required_fields.append(field_name)
return required_fields
def get_optional_fields_from_schema(schema_class: Type[BaseModel]) -> List[str]:
"""
Извлекает список необязательных полей из схемы Pydantic
Args:
schema_class: Класс схемы Pydantic
Returns:
Список имен необязательных полей
"""
optional_fields = []
# Используем model_fields для Pydantic v2 или __fields__ для v1
if hasattr(schema_class, 'model_fields'):
fields = schema_class.model_fields
else:
fields = schema_class.__fields__
for field_name, field_info in fields.items():
# В Pydantic v2 есть метод is_required()
if hasattr(field_info, 'is_required'):
if not field_info.is_required():
optional_fields.append(field_name)
elif hasattr(field_info, 'required'):
if not field_info.required:
optional_fields.append(field_name)
else:
# Fallback для старых версий - проверяем наличие default
has_default = False
if hasattr(field_info, 'default'):
has_default = field_info.default is not ...
elif hasattr(field_info, 'default_factory'):
has_default = field_info.default_factory is not None
if has_default:
optional_fields.append(field_name)
return optional_fields
def register_getter_from_schema(parser_instance, getter_name: str, method: callable,
schema_class: Type[BaseModel], description: str = ""):
"""
Регистрирует геттер в парсере, используя схему Pydantic для определения параметров
Args:
parser_instance: Экземпляр парсера
getter_name: Имя геттера
method: Метод для выполнения
schema_class: Класс схемы Pydantic
description: Описание геттера (если не указано, берется из docstring метода)
"""
# Извлекаем параметры из схемы
required_params = get_required_fields_from_schema(schema_class)
optional_params = get_optional_fields_from_schema(schema_class)
# Если описание не указано, берем из docstring метода
if not description:
description = inspect.getdoc(method) or ""
# Регистрируем геттер
parser_instance.register_getter(
name=getter_name,
method=method,
required_params=required_params,
optional_params=optional_params,
description=description
)
def validate_params_with_schema(params: Dict[str, Any], schema_class: Type[BaseModel]) -> Dict[str, Any]:
"""
Валидирует параметры с помощью схемы Pydantic
Args:
params: Словарь параметров
schema_class: Класс схемы Pydantic
Returns:
Валидированные параметры
Raises:
ValidationError: Если параметры не прошли валидацию
"""
try:
# Создаем экземпляр схемы для валидации
validated_data = schema_class(**params)
return validated_data.dict()
except Exception as e:
raise ValueError(f"Ошибка валидации параметров: {str(e)}")

View File

@@ -100,8 +100,34 @@ class ReportService:
# Получаем парсер
parser = get_parser(request.report_type)
# Получаем значение
value = parser.get_value(df, request.get_params)
# Устанавливаем DataFrame в парсер для использования в геттерах
parser.df = df
# Получаем параметры запроса
get_params = request.get_params or {}
# Определяем имя геттера (по умолчанию используем первый доступный)
getter_name = get_params.pop("getter", None)
if not getter_name:
# Если геттер не указан, берем первый доступный
available_getters = list(parser.getters.keys())
if available_getters:
getter_name = available_getters[0]
print(f"⚠️ Геттер не указан, используем первый доступный: {getter_name}")
else:
return DataResult(
success=False,
message="Парсер не имеет доступных геттеров"
)
# Получаем значение через указанный геттер
try:
value = parser.get_value(getter_name, get_params)
except ValueError as e:
return DataResult(
success=False,
message=f"Ошибка параметров: {str(e)}"
)
# Формируем результат
if value is not None:

View File

@@ -1,17 +0,0 @@
applications:
- name: nin-python-parser-dev-test
buildpack: python_buildpack
health-check-type: web
services:
- logging-shared-dev
command: python /app/run_stand.py
path: .
disk_quota: 2G
memory: 4G
instances: 1
env:
MINIO_ENDPOINT: s3-region1.ppc-jv-dev.sibintek.ru
MINIO_ACCESS_KEY: 00a70fac02c1208446de
MINIO_SECRET_KEY: 1gk9tVYEEoH9ADRxb4kiAuCo6CCISdV6ie0p6oDO
MINIO_BUCKET: bucket-476684e7-1223-45ac-a101-8b5aeda487d6
MINIO_SECURE: false

View File

@@ -1 +0,0 @@
{"version":"1","format":"xl-single","id":"29118f57-702e-4363-9a41-9f06655e449d","xl":{"version":"3","this":"195a90f4-fc26-46a8-b6d4-0b50b99b1342","sets":[["195a90f4-fc26-46a8-b6d4-0b50b99b1342"]],"distributionAlgo":"SIPMOD+PARITY"}}

View File

@@ -12,4 +12,3 @@ requests>=2.31.0
# pytest-mock>=3.10.0
httpx>=0.24.0
numpy
streamlit>=1.28.0

View File

@@ -1,51 +0,0 @@
#!/usr/bin/env python3
"""
Запуск Streamlit интерфейса для NIN Excel Parsers API
"""
import subprocess
import sys
import webbrowser
import time
def main():
"""Основная функция"""
print("🚀 ЗАПУСК STREAMLIT ИНТЕРФЕЙСА")
print("=" * 50)
print("Убедитесь, что FastAPI сервер запущен на порту 8000")
print("=" * 50)
# Проверяем, установлен ли Streamlit
try:
import streamlit
print(f"✅ Streamlit {streamlit.__version__} установлен")
except ImportError:
print("❌ Streamlit не установлен")
print("Установите: pip install streamlit")
return
print("\n🚀 Запускаю Streamlit...")
print("📍 URL: http://localhost:8501")
print("🛑 Для остановки нажмите Ctrl+C")
# Открываем браузер
try:
webbrowser.open("http://localhost:8501")
print("✅ Браузер открыт")
except Exception as e:
print(f"⚠️ Не удалось открыть браузер: {e}")
# Запускаем Streamlit
try:
subprocess.run([
sys.executable, "-m", "streamlit", "run", "streamlit_app.py",
"--server.port", "8501",
"--server.address", "localhost",
"--server.headless", "false",
"--browser.gatherUsageStats", "false"
])
except KeyboardInterrupt:
print("\n👋 Streamlit остановлен")
if __name__ == "__main__":
main()

View File

@@ -1 +0,0 @@
python-3.11.*

49
start_dev.py Normal file
View File

@@ -0,0 +1,49 @@
#!/usr/bin/env python3
"""
Скрипт для запуска проекта в режиме разработки
"""
import subprocess
import sys
import os
def run_command(command, description):
"""Выполнение команды с выводом"""
print(f"🔄 {description}...")
try:
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(f"{description} выполнено успешно")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Ошибка при {description.lower()}:")
print(f" Команда: {command}")
print(f" Ошибка: {e.stderr}")
return False
def main():
print("🚀 Запуск проекта в режиме разработки")
print("=" * 50)
# Останавливаем продакшн контейнеры если они запущены
if run_command("docker compose ps", "Проверка статуса контейнеров"):
if "Up" in subprocess.run("docker compose ps", shell=True, capture_output=True, text=True).stdout:
print("🛑 Останавливаю продакшн контейнеры...")
run_command("docker compose down", "Остановка продакшн контейнеров")
# Запускаем режим разработки
print("\n🔧 Запуск режима разработки...")
if run_command("docker compose -f docker-compose.dev.yml up -d", "Запуск контейнеров разработки"):
print("\n🎉 Проект запущен в режиме разработки!")
print("\n📍 Доступные сервисы:")
print(" • Streamlit: http://localhost:8501")
print(" • FastAPI: http://localhost:8000")
print(" • MinIO Console: http://localhost:9001")
print("\n💡 Теперь изменения в streamlit_app/ будут автоматически перезагружаться!")
print("\n🛑 Для остановки используйте:")
print(" docker compose -f docker-compose.dev.yml down")
else:
print("\nНе удалось запустить проект в режиме разработки")
sys.exit(1)
if __name__ == "__main__":
main()

49
start_prod.py Normal file
View File

@@ -0,0 +1,49 @@
#!/usr/bin/env python3
"""
Скрипт для запуска проекта в продакшн режиме
"""
import subprocess
import sys
def run_command(command, description):
"""Выполнение команды с выводом"""
print(f"🔄 {description}...")
try:
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(f"{description} выполнено успешно")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Ошибка при {description.lower()}:")
print(f" Команда: {command}")
print(f" Ошибка: {e.stderr}")
return False
def main():
print("🚀 Запуск проекта в продакшн режиме")
print("=" * 50)
# Останавливаем контейнеры разработки если они запущены
if run_command("docker compose -f docker-compose.dev.yml ps", "Проверка статуса контейнеров разработки"):
if "Up" in subprocess.run("docker compose -f docker-compose.dev.yml ps", shell=True, capture_output=True, text=True).stdout:
print("🛑 Останавливаю контейнеры разработки...")
run_command("docker compose -f docker-compose.dev.yml down", "Остановка контейнеров разработки")
# Запускаем продакшн режим
print("\n🏭 Запуск продакшн режима...")
if run_command("docker compose up -d --build", "Запуск продакшн контейнеров"):
print("\n🎉 Проект запущен в продакшн режиме!")
print("\n📍 Доступные сервисы:")
print(" • Streamlit: http://localhost:8501")
print(" • FastAPI: http://localhost:8000")
print(" • MinIO Console: http://localhost:9001")
print("\n💡 Для разработки используйте:")
print(" python start_dev.py")
print("\n🛑 Для остановки используйте:")
print(" docker compose down")
else:
print("\nНе удалось запустить проект в продакшн режиме")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,15 @@
[server]
port = 8501
address = "0.0.0.0"
enableCORS = false
enableXsrfProtection = false
[browser]
gatherUsageStats = false
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
secondaryBackgroundColor = "#F0F2F6"
textColor = "#262730"
font = "sans serif"

23
streamlit_app/Dockerfile Normal file
View File

@@ -0,0 +1,23 @@
FROM python:3.11-slim
WORKDIR /app
# Установка системных зависимостей
RUN apt-get update && apt-get install -y \
gcc \
&& rm -rf /var/lib/apt/lists/*
# Копирование requirements.txt
COPY requirements.txt .
# Установка Python зависимостей
RUN pip install --no-cache-dir -r requirements.txt
# Копирование кода приложения
COPY . .
# Открытие порта
EXPOSE 8501
# Запуск Streamlit
CMD ["streamlit", "run", "streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]

View File

@@ -0,0 +1,100 @@
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from minio import Minio
import os
from io import BytesIO
# Конфигурация страницы
st.set_page_config(
page_title="Сводка данных",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Заголовок приложения
st.title("📊 Анализ данных сводки")
st.markdown("---")
# Инициализация MinIO клиента
@st.cache_resource
def init_minio_client():
try:
client = Minio(
os.getenv("MINIO_ENDPOINT", "localhost:9000"),
access_key=os.getenv("MINIO_ACCESS_KEY", "minioadmin"),
secret_key=os.getenv("MINIO_SECRET_KEY", "minioadmin"),
secure=os.getenv("MINIO_SECURE", "false").lower() == "true"
)
return client
except Exception as e:
st.error(f"Ошибка подключения к MinIO: {e}")
return None
# Боковая панель
with st.sidebar:
st.header("⚙️ Настройки")
# Выбор типа данных
data_type = st.selectbox(
"Тип данных",
["Мониторинг топлива", "Сводка ПМ", "Сводка ЦА"]
)
# Выбор периода
period = st.date_input(
"Период",
value=pd.Timestamp.now().date()
)
st.markdown("---")
st.markdown("### 📈 Статистика")
st.info("Выберите тип данных для анализа")
# Основной контент
col1, col2 = st.columns([2, 1])
with col1:
st.subheader(f"📋 {data_type}")
if data_type == "Мониторинг топлива":
st.info("Анализ данных мониторинга топлива")
# Здесь будет логика для работы с данными мониторинга топлива
elif data_type == "Сводка ПМ":
st.info("Анализ данных сводки ПМ")
# Здесь будет логика для работы с данными сводки ПМ
elif data_type == "Сводка ЦА":
st.info("Анализ данных сводки ЦА")
# Здесь будет логика для работы с данными сводки ЦА
with col2:
st.subheader("📊 Быстрая статистика")
st.metric("Всего записей", "0")
st.metric("Активных", "0")
st.metric("Ошибок", "0")
# Нижняя панель
st.markdown("---")
st.subheader("🔍 Детальный анализ")
# Заглушка для графиков
placeholder = st.empty()
with placeholder.container():
col1, col2 = st.columns(2)
with col1:
st.write("📈 График 1")
# Здесь будет график
with col2:
st.write("📊 График 2")
# Здесь будет график
# Футер
st.markdown("---")
st.markdown("**Разработано для анализа данных сводки** | v1.0.0")

View File

@@ -0,0 +1,7 @@
streamlit>=1.28.0
pandas>=2.0.0
numpy>=1.24.0
plotly>=5.15.0
minio>=7.1.0
openpyxl>=3.1.0
xlrd>=2.0.1

View File

@@ -16,7 +16,8 @@ st.set_page_config(
)
# Конфигурация API
API_BASE_URL = os.getenv("API_BASE_URL", "http://localhost:8000")
API_BASE_URL = os.getenv("API_BASE_URL", "http://fastapi:8000") # Внутренний адрес для Docker
API_PUBLIC_URL = os.getenv("API_PUBLIC_URL", "http://localhost:8000") # Внешний адрес для пользователя
def check_api_health():
"""Проверка доступности API"""
@@ -73,7 +74,7 @@ def main():
st.info("Убедитесь, что FastAPI сервер запущен")
return
st.success(f"✅ API доступен по адресу {API_BASE_URL}")
st.success(f"✅ API доступен по адресу {API_PUBLIC_URL}")
# Боковая панель с информацией
with st.sidebar:
@@ -254,8 +255,8 @@ def main():
modes = st.multiselect(
"Выберите режимы",
["План", "Факт", "Норматив"],
default=["План", "Факт"],
["plan", "fact", "normativ"],
default=["plan", "fact"],
key="ca_modes"
)
@@ -373,7 +374,7 @@ def main():
# Футер
st.markdown("---")
st.markdown("### 📚 Документация API")
st.markdown(f"Полная документация доступна по адресу: {API_BASE_URL}/docs")
st.markdown(f"Полная документация доступна по адресу: {API_PUBLIC_URL}/docs")
# Информация о проекте
with st.expander(" О проекте"):