3 Commits
main ... fix-1

Author SHA1 Message Date
4cbdaf1b60 ch 2025-09-01 13:58:42 +03:00
9459196804 all in docker 2025-09-01 12:24:37 +03:00
ce228d9756 work 2025-09-01 12:08:16 +03:00
48 changed files with 1679 additions and 782 deletions

153
.gitignore vendored Normal file
View File

@@ -0,0 +1,153 @@
data
.streamlit
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# IDE
.vscode/
.idea/
*.swp
*.swo
*~
# OS
.DS_Store
Thumbs.db
# Project specific
data/
*.zip
*.xlsx
*.xls
*.xlsm
# MinIO data directory
minio_data/

182
README.md Normal file
View File

@@ -0,0 +1,182 @@
# 🚀 NIN Excel Parsers API - Полная система
Полноценная система для парсинга Excel отчетов нефтеперерабатывающих заводов (НПЗ) с использованием FastAPI, MinIO и Streamlit.
## 🏗️ Архитектура проекта
Проект состоит из **двух изолированных пакетов**:
- **`python_parser/`** - FastAPI сервер + парсеры Excel
- **`streamlit_app/`** - Веб-интерфейс для демонстрации API
## 🚀 Быстрый запуск
### **Вариант 1: Все сервисы в Docker (рекомендуется)**
```bash
# Запуск всех сервисов: MinIO + FastAPI + Streamlit
docker-compose up -d
# Доступ:
# - MinIO Console: http://localhost:9001
# - FastAPI: http://localhost:8000
# - Streamlit: http://localhost:8501
# - API Docs: http://localhost:8000/docs
```
### **Вариант 2: Только MinIO в Docker + сервисы локально**
```bash
# Запуск MinIO в Docker
docker-compose up -d minio
# Запуск FastAPI локально
cd python_parser
python run_dev.py
# В отдельном терминале - Streamlit
cd streamlit_app
streamlit run app.py
```
### **Вариант 3: Только MinIO в Docker**
```bash
# Запуск только MinIO
docker-compose up -d minio
```
## 📋 Описание сервисов
- **MinIO** (порт 9000-9001): S3-совместимое хранилище для данных
- **FastAPI** (порт 8000): API сервер для парсинга Excel файлов
- **Streamlit** (порт 8501): Веб-интерфейс для демонстрации API
## 📁 Структура проекта
```
python_parser_cf/ # Корень проекта
├── python_parser/ # Пакет FastAPI + парсеры
│ ├── app/ # FastAPI приложение
│ │ ├── main.py # Основной файл приложения
│ │ └── schemas/ # Pydantic схемы
│ ├── core/ # Бизнес-логика
│ │ ├── models.py # Модели данных
│ │ ├── ports.py # Интерфейсы (порты)
│ │ └── services.py # Сервисы
│ ├── adapters/ # Адаптеры для внешних систем
│ │ ├── storage.py # MinIO адаптер
│ │ └── parsers/ # Парсеры Excel файлов
│ ├── data/ # Тестовые данные
│ ├── Dockerfile # Docker образ для FastAPI
│ ├── requirements.txt # Зависимости FastAPI
│ └── run_dev.py # Запуск FastAPI локально
├── streamlit_app/ # Пакет Streamlit
│ ├── app.py # Основное Streamlit приложение
│ ├── requirements.txt # Зависимости Streamlit
│ ├── Dockerfile # Docker образ для Streamlit
│ ├── .streamlit/ # Конфигурация Streamlit
│ │ └── config.toml # Настройки
│ └── README.md # Документация Streamlit
├── docker-compose.yml # Docker Compose конфигурация
├── .gitignore # Git исключения
└── README.md # Общая документация
```
## 🔍 Доступные эндпоинты
- **GET /** - Информация об API
- **GET /docs** - Swagger документация
- **GET /parsers** - Список доступных парсеров
- **GET /parsers/{parser_name}/getters** - Информация о геттерах парсера
- **POST /svodka_pm/upload-zip** - Загрузка сводок ПМ
- **POST /svodka_ca/upload** - Загрузка сводок ЦА
- **POST /monitoring_fuel/upload-zip** - Загрузка мониторинга топлива
- **POST /svodka_pm/get_data** - Получение данных сводок ПМ
- **POST /svodka_ca/get_data** - Получение данных сводок ЦА
- **POST /monitoring_fuel/get_data** - Получение данных мониторинга топлива
## 📊 Поддерживаемые типы отчетов
1. **svodka_pm** - Сводки по переработке нефти (ПМ)
- Геттеры: `single_og`, `total_ogs`
2. **svodka_ca** - Сводки по переработке нефти (ЦА)
- Геттеры: `get_data`
3. **monitoring_fuel** - Мониторинг топлива
- Геттеры: `total_by_columns`, `month_by_code`
## 🏗️ Архитектура
Проект использует **Hexagonal Architecture (Ports and Adapters)**:
- **Порты (Ports)**: Интерфейсы для бизнес-логики
- **Адаптеры (Adapters)**: Реализации для внешних систем
- **Сервисы (Services)**: Бизнес-логика приложения
### Система геттеров парсеров
Каждый парсер может иметь несколько методов получения данных (геттеров):
- Регистрация геттеров в словаре с метаданными
- Валидация параметров для каждого геттера
- Единый интерфейс `get_value(getter_name, params)`
## 🐳 Docker
### Сборка образов:
```bash
# FastAPI
docker build -t nin-fastapi ./python_parser
# Streamlit
docker build -t nin-streamlit ./streamlit_app
```
### Запуск отдельных сервисов:
```bash
# Только MinIO
docker-compose up -d minio
# MinIO + FastAPI
docker-compose up -d minio fastapi
# Все сервисы
docker-compose up -d
```
## 🛑 Остановка
### Остановка Docker сервисов:
```bash
# Все сервисы
docker-compose down
# Только MinIO
docker-compose stop minio
```
### Остановка локальных сервисов:
```bash
# Нажмите Ctrl+C в терминале с FastAPI/Streamlit
```
## 🔧 Разработка
### Добавление нового парсера:
1. Создайте файл в `python_parser/adapters/parsers/`
2. Реализуйте интерфейс `ParserPort`
3. Добавьте в `python_parser/core/services.py`
4. Создайте схемы в `python_parser/app/schemas/`
5. Добавьте эндпоинты в `python_parser/app/main.py`
### Тестирование:
```bash
# Запуск тестов
cd python_parser
pytest
# Запуск с покрытием
pytest --cov=.
```
## 📝 Лицензия
Проект разработан для внутреннего использования НИН.

View File

@@ -170,16 +170,11 @@ def main():
if not port_8000_ok:
print("\n🔧 РЕШЕНИЕ: Запустите FastAPI сервер")
print("python run_dev.py")
print("docker-compose up -d fastapi")
if not port_8501_ok:
print("\n🔧 РЕШЕНИЕ: Запустите Streamlit")
print("python run_streamlit.py")
print("\n🚀 Для автоматического запуска используйте:")
print("python start_demo.py")
print("\n🔍 Для пошагового запуска используйте:")
print("python run_manual.py")
print("docker-compose up -d streamlit")
if __name__ == "__main__":
main()

34
create_test_excel.py Normal file
View File

@@ -0,0 +1,34 @@
#!/usr/bin/env python3
"""
Создание тестового Excel файла для тестирования API
"""
import pandas as pd
import numpy as np
def create_test_excel():
"""Создание тестового Excel файла"""
# Создаем тестовые данные
data = {
'name': ['Установка 1', 'Установка 2', 'Установка 3'],
'normativ': [100, 200, 300],
'total': [95, 195, 295],
'total_1': [90, 190, 290]
}
df = pd.DataFrame(data)
# Сохраняем в Excel
filename = 'test_file.xlsx'
with pd.ExcelWriter(filename, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='Мониторинг потребления', index=False)
print(f"✅ Тестовый файл создан: {filename}")
print(f"📊 Содержимое: {len(df)} строк, {len(df.columns)} столбцов")
print(f"📋 Столбцы: {list(df.columns)}")
return filename
if __name__ == "__main__":
create_test_excel()

View File

@@ -10,11 +10,11 @@ services:
MINIO_ROOT_PASSWORD: minioadmin
command: server /data --console-address ":9001"
volumes:
- minio_data:/data
- ./minio_data:/data
restart: unless-stopped
fastapi:
build: .
build: ./python_parser
container_name: svodka_fastapi
ports:
- "8000:8000"
@@ -28,5 +28,14 @@ services:
- minio
restart: unless-stopped
volumes:
minio_data:
streamlit:
build: ./streamlit_app
container_name: svodka_streamlit
ports:
- "8501:8501"
environment:
- API_BASE_URL=http://fastapi:8000
- DOCKER_ENV=true
depends_on:
- fastapi
restart: unless-stopped

View File

@@ -1,28 +0,0 @@
[server]
port = 8501
address = "localhost"
headless = false
enableCORS = false
enableXsrfProtection = false
[browser]
gatherUsageStats = false
serverAddress = "localhost"
serverPort = 8501
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
secondaryBackgroundColor = "#F0F2F6"
textColor = "#262730"
font = "sans serif"
[client]
showErrorDetails = true
caching = true
displayEnabled = true
[runner]
magicEnabled = true
installTracer = false
fixMatplotlib = true

20
python_parser/Dockerfile_ Normal file
View File

@@ -0,0 +1,20 @@
FROM repo-dev.predix.rosneft.ru/python:3.11-slim
WORKDIR /app
# RUN pip install kafka-python==2.0.2
# RUN pip freeze > /app/requirements.txt
# ADD . /app
COPY requirements.txt .
RUN mkdir -p vendor
RUN pip download -r /app/requirements.txt --no-binary=:none: -d /app/vendor
# ADD . /app
# ENV KAFKA_BROKER=10.234.160.10:9093,10.234.160.10:9094,10.234.160.10:9095
# ENV KAFKA_UPDATE_ALGORITHM_RULES_TOPIC=algorithm-rule-update
# ENV KAFKA_CLIENT_USERNAME=cf-service
# CMD ["python", "/app/run_dev.py"]

View File

@@ -1,66 +0,0 @@
# 🚀 Быстрый старт NIN Excel Parsers API
## 🐳 Запуск через Docker (рекомендуется)
### Вариант 1: MinIO + FastAPI в Docker
```bash
# Запуск всех сервисов
docker-compose up -d --build
# Проверка
curl http://localhost:8000
curl http://localhost:9001
```
### Вариант 2: Только MinIO в Docker
```bash
# Запуск только MinIO
docker-compose up -d minio
# Проверка
curl http://localhost:9001
```
## 🖥️ Запуск FastAPI локально
```bash
# Если MinIO в Docker
python run_dev.py
# Проверка
curl http://localhost:8000
```
## 📊 Запуск Streamlit
```bash
# В отдельном терминале
python run_streamlit.py
```
## 🌐 Доступные URL
- **FastAPI API**: http://localhost:8000
- **API документация**: http://localhost:8000/docs
- **MinIO консоль**: http://localhost:9001
- **Streamlit интерфейс**: http://localhost:8501
## 🛑 Остановка
```bash
# Остановка Docker
docker-compose down
# Остановка Streamlit
# Ctrl+C в терминале
```
## 🔧 Диагностика
```bash
# Проверка состояния
python check_services.py
# Просмотр логов Docker
docker-compose logs
```

View File

@@ -1,66 +1,28 @@
# NIN Excel Parsers API
# 📊 Python Parser - FastAPI + Парсеры Excel
API для парсинга Excel отчетов нефтеперерабатывающих заводов (НПЗ) с использованием FastAPI и MinIO для хранения данных.
Пакет FastAPI сервера и парсеров Excel для нефтеперерабатывающих заводов.
## 🚀 Быстрый запуск
### **Вариант 1: Только MinIO в Docker + FastAPI локально**
### **Локально:**
```bash
# Запуск MinIO в Docker
docker-compose up -d minio
# Установка зависимостей
pip install -r requirements.txt
# Запуск FastAPI локально
# Запуск FastAPI сервера
python run_dev.py
# В отдельном терминале запуск Streamlit
python run_streamlit.py
```
### **Вариант 2: MinIO + FastAPI в Docker + Streamlit локально**
### **В Docker:**
```bash
# Запуск MinIO и FastAPI в Docker
docker-compose up -d
# Сборка образа
docker build -t nin-fastapi .
# В отдельном терминале запуск Streamlit
python run_streamlit.py
# Запуск контейнера
docker run -p 8000:8000 nin-fastapi
```
### **Вариант 3: Только MinIO в Docker**
```bash
# Запуск только MinIO
docker-compose up -d minio
```
## 📋 Описание сервисов
- **MinIO** (порт 9000-9001): S3-совместимое хранилище для данных
- **FastAPI** (порт 8000): API сервер для парсинга Excel файлов
- **Streamlit** (порт 8501): Веб-интерфейс для демонстрации API
## 🔧 Диагностика
Для проверки состояния всех сервисов:
```bash
python check_services.py
```
## 🛑 Остановка
### Остановка Docker сервисов:
```bash
# Все сервисы
docker-compose down
# Только MinIO
docker-compose stop minio
```
### Остановка Streamlit:
```bash
# Нажмите Ctrl+C в терминале с Streamlit
```
## 📁 Структура проекта
## 📁 Структура пакета
```
python_parser/
@@ -75,104 +37,49 @@ python_parser/
│ ├── storage.py # MinIO адаптер
│ └── parsers/ # Парсеры Excel файлов
├── data/ # Тестовые данные
├── docker-compose.yml # Docker Compose конфигурация
├── Dockerfile # Docker образ для FastAPI
├── run_dev.py # Запуск FastAPI локально
── run_streamlit.py # Запуск Streamlit
└── check_services.py # Диагностика сервисов
├── requirements.txt # Зависимости Python
── run_dev.py # Запуск FastAPI локально
```
## 🔍 Доступные эндпоинты
## 🔍 Основные эндпоинты
- **GET /** - Информация об API
- **GET /docs** - Swagger документация
- **GET /parsers** - Список доступных парсеров
- **GET /parsers/{parser_name}/getters** - Информация о геттерах парсера
- **POST /svodka_pm/upload-zip** - Загрузка сводок ПМ
- **POST /svodka_ca/upload-zip** - Загрузка сводок ЦА
- **POST /svodka_ca/upload** - Загрузка сводок ЦА
- **POST /monitoring_fuel/upload-zip** - Загрузка мониторинга топлива
- **GET /svodka_pm/data** - Получение данных сводок ПМ
- **GET /svodka_ca/data** - Получение данных сводок ЦА
- **GET /monitoring_fuel/data** - Получение данных мониторинга топлива
- **POST /svodka_pm/get_data** - Получение данных сводок ПМ
- **POST /svodka_ca/get_data** - Получение данных сводок ЦА
- **POST /monitoring_fuel/get_data** - Получение данных мониторинга топлива
## 📊 Поддерживаемые типы отчетов
## 📊 Поддерживаемые парсеры
1. **svodka_pm** - Сводки по переработке нефти (ПМ)
- Геттеры: `single_og`, `total_ogs`
2. **svodka_ca** - Сводки по переработке нефти (ЦА)
- Геттеры: `get_data`
3. **monitoring_fuel** - Мониторинг топлива
- Геттеры: `total_by_columns`, `month_by_code`
## 🐳 Docker команды
## 🏗️ Архитектура
### Сборка и запуск:
```bash
# Все сервисы
docker-compose up -d --build
Использует **Hexagonal Architecture (Ports and Adapters)**:
# Только MinIO
docker-compose up -d minio
- **Порты (Ports)**: Интерфейсы для бизнес-логики
- **Адаптеры (Adapters)**: Реализации для внешних систем
- **Сервисы (Services)**: Бизнес-логика приложения
# Только FastAPI (требует MinIO)
docker-compose up -d fastapi
```
### Система геттеров парсеров
### Просмотр логов:
```bash
# Все сервисы
docker-compose logs
Каждый парсер может иметь несколько методов получения данных (геттеров):
- Регистрация геттеров в словаре с метаданными
- Валидация параметров для каждого геттера
- Единый интерфейс `get_value(getter_name, params)`
# Конкретный сервис
docker-compose logs fastapi
docker-compose logs minio
```
### Остановка:
```bash
docker-compose down
```
## 🔧 Устранение неполадок
### Проблема: "Streamlit не может подключиться к FastAPI"
**Симптомы:**
- Streamlit открывается, но показывает "API недоступен по адресу http://localhost:8000"
- FastAPI не отвечает на порту 8000
**Решения:**
1. **Проверьте порты:**
```bash
# Windows
netstat -an | findstr :8000
# Linux/Mac
netstat -an | grep :8000
```
2. **Перезапустите FastAPI:**
```bash
# Остановите текущий процесс (Ctrl+C)
python run_dev.py
```
3. **Проверьте логи Docker:**
```bash
docker-compose logs fastapi
```
### Проблема: "MinIO недоступен"
**Решения:**
1. Запустите Docker Desktop
2. Проверьте статус контейнера: `docker ps`
3. Перезапустите MinIO: `docker-compose restart minio`
### Проблема: "Порт уже занят"
**Решения:**
1. Найдите процесс: `netstat -ano | findstr :8000`
2. Остановите процесс: `taskkill /PID <номер_процесса>`
3. Или используйте другой порт в конфигурации
## 🚀 Разработка
## 🔧 Разработка
### Добавление нового парсера:
@@ -192,6 +99,6 @@ pytest
pytest --cov=.
```
## 📝 Лицензия
## 📝 Примечание
Проект разработан для внутреннего использования НИН.
Этот пакет является частью большей системы. Для полной документации и запуска всех сервисов см. README.md в корне проекта.

View File

@@ -1,186 +0,0 @@
# 🚀 Streamlit Demo для NIN Excel Parsers API
## Описание
Streamlit приложение для демонстрации работы всех API эндпоинтов NIN Excel Parsers. Предоставляет удобный веб-интерфейс для тестирования функциональности парсеров.
## Возможности
- 📤 **Загрузка файлов**: Загрузка ZIP архивов и Excel файлов
- 📊 **Сводки ПМ**: Работа с плановыми и фактическими данными
- 🏭 **Сводки СА**: Парсинг сводок центрального аппарата
-**Мониторинг топлива**: Анализ данных по топливу
- 📱 **Адаптивный интерфейс**: Удобное использование на всех устройствах
## Установка и запуск
### 1. Установка зависимостей
```bash
pip install -r requirements.txt
```
### 2. Запуск FastAPI сервера
В одном терминале:
```bash
python run_dev.py
```
### 3. Запуск Streamlit приложения
В другом терминале:
```bash
python run_streamlit.py
```
Или напрямую:
```bash
streamlit run streamlit_app.py
```
### 4. Открытие в браузере
Приложение автоматически откроется по адресу: http://localhost:8501
## Конфигурация
### Переменные окружения
```bash
# URL API сервера
export API_BASE_URL="http://localhost:8000"
# Порт Streamlit
export STREAMLIT_PORT="8501"
# Хост Streamlit
export STREAMLIT_HOST="localhost"
```
### Настройки Streamlit
Файл `.streamlit/config.toml` содержит настройки:
- Порт: 8501
- Хост: localhost
- Тема: Кастомная цветовая схема
- Безопасность: Отключены CORS и XSRF для локальной разработки
## Структура приложения
### Вкладки
1. **📤 Загрузка файлов**
- Загрузка сводок ПМ (ZIP)
- Загрузка мониторинга топлива (ZIP)
- Загрузка сводки СА (Excel)
2. **📊 Сводки ПМ**
- Данные по одному ОГ
- Данные по всем ОГ
- Выбор кодов строк и столбцов
3. **🏭 Сводки СА**
- Выбор режимов (план/факт/норматив)
- Выбор таблиц для анализа
4. **⛽ Мониторинг топлива**
- Агрегация по колонкам
- Данные за конкретный месяц
### Боковая панель
- Информация о сервере (PID, CPU, память)
- Список доступных парсеров
- Статус подключения к API
## Использование
### 1. Загрузка файлов
1. Выберите соответствующий тип файла
2. Нажмите "Загрузить"
3. Дождитесь подтверждения загрузки
### 2. Получение данных
1. Выберите нужные параметры (ОГ, коды, столбцы)
2. Нажмите "Получить данные"
3. Результат отобразится в JSON формате
### 3. Мониторинг
- Проверяйте статус API в верхней части
- Следите за логами операций
- Используйте индикаторы загрузки
## Устранение неполадок
### API недоступен
```bash
# Проверьте, запущен ли FastAPI сервер
curl http://localhost:8000/
# Проверьте порт
netstat -an | grep 8000
```
### Streamlit не запускается
```bash
# Проверьте версию Python
python --version
# Переустановите Streamlit
pip uninstall streamlit
pip install streamlit
# Проверьте порт 8501
netstat -an | grep 8501
```
### Ошибки загрузки файлов
- Убедитесь, что файл соответствует формату
- Проверьте размер файла (не более 100MB)
- Убедитесь, что MinIO запущен
## Разработка
### Добавление новых функций
1. Создайте новую вкладку в `streamlit_app.py`
2. Добавьте соответствующие API вызовы
3. Обновите боковую панель при необходимости
### Кастомизация темы
Отредактируйте `.streamlit/config.toml`:
```toml
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
# ... другие цвета
```
### Добавление новых парсеров
1. Создайте парсер в `adapters/parsers/`
2. Добавьте в `main.py`
3. Обновите Streamlit интерфейс
## Безопасность
⚠️ **Внимание**: Приложение настроено для локальной разработки
- CORS отключен
- XSRF защита отключена
- Не используйте в продакшене без дополнительной настройки
## Поддержка
При возникновении проблем:
1. Проверьте логи в терминале
2. Убедитесь, что все сервисы запущены
3. Проверьте конфигурацию
4. Обратитесь к документации API: http://localhost:8000/docs

View File

@@ -1,9 +1,9 @@
import pandas as pd
import re
from typing import Dict
import zipfile
from typing import Dict, Tuple
from core.ports import ParserPort
from adapters.pconfig import data_to_json, get_object_by_name
from adapters.pconfig import data_to_json
class MonitoringFuelParser(ParserPort):
@@ -11,71 +11,55 @@ class MonitoringFuelParser(ParserPort):
name = "Мониторинг топлива"
def find_header_row(self, file_path: str, sheet: str, search_value: str = "Установка", max_rows: int = 50) -> int:
"""Определение индекса заголовка в Excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
df_temp = pd.read_excel(
file_path,
sheet_name=sheet,
header=None,
nrows=max_rows
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
self.register_getter(
name="total_by_columns",
method=self._get_total_by_columns,
required_params=["columns"],
optional_params=[],
description="Агрегация данных по колонкам"
)
# Ищем строку, где хотя бы в одном столбце встречается искомое значение
for idx, row in df_temp.iterrows():
if row.astype(str).str.strip().str.contains(f"^{search_value}$", case=False, regex=True).any():
print(f"Заголовок найден в строке {idx} (Excel: {idx + 1})")
return idx + 1 # возвращаем индекс строки (0-based)
raise ValueError(f"Не найдена строка с заголовком '{search_value}' в первых {max_rows} строках.")
def parse_single(self, file, sheet, header_num=None):
''' Собственно парсер отчетов одного объекта'''
# Автоопределение header_num, если не передан
if header_num is None:
header_num = self.find_header_row(file, sheet, search_value="Установка")
# Читаем весь лист, начиная с найденной строки как заголовок
df_full = pd.read_excel(
file,
sheet_name=sheet,
header=header_num,
usecols=None,
index_col=None
self.register_getter(
name="month_by_code",
method=self._get_month_by_code,
required_params=["month"],
optional_params=[],
description="Получение данных за конкретный месяц"
)
# === Удаление полностью пустых столбцов ===
df_clean = df_full.replace(r'^\s*$', pd.NA, regex=True) # заменяем пустые строки на NA
df_clean = df_clean.dropna(axis=1, how='all') # удаляем столбцы, где все значения — NA
df_full = df_full.loc[:, df_clean.columns] # оставляем только непустые столбцы
def _get_total_by_columns(self, params: dict):
"""Агрегация по колонкам (обертка для совместимости)"""
columns = params["columns"]
if not columns:
raise ValueError("Отсутствуют идентификаторы столбцов")
# === Переименовываем нужные столбцы по позициям ===
if len(df_full.columns) < 2:
raise ValueError("DataFrame должен содержать как минимум 2 столбца.")
# TODO: Переделать под новую архитектуру
df_means, _ = self.aggregate_by_columns(self.df, columns)
return df_means.to_dict(orient='index')
new_columns = df_full.columns.tolist()
def _get_month_by_code(self, params: dict):
"""Получение данных за месяц (обертка для совместимости)"""
month = params["month"]
if not month:
raise ValueError("Отсутствует идентификатор месяца")
new_columns[0] = 'name'
new_columns[1] = 'normativ'
new_columns[-2] = 'total'
new_columns[-1] = 'total_1'
# TODO: Переделать под новую архитектуру
df_month = self.get_month(self.df, month)
return df_month.to_dict(orient='index')
df_full.columns = new_columns
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_monitoring_fuel_files(file_path, params)
return self.df
# Проверяем, что колонка 'name' существует
if 'name' in df_full.columns:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
df_full['id'] = df_full['name'].apply(get_object_by_name)
# Устанавливаем id как индекс
df_full.set_index('id', inplace=True)
print(f"Окончательное количество столбцов: {len(df_full.columns)}")
return df_full
def parse(self, file_path: str, params: dict) -> dict:
import zipfile
def parse_monitoring_fuel_files(self, zip_path: str, params: dict) -> Dict[str, pd.DataFrame]:
"""Парсинг ZIP архива с файлами мониторинга топлива"""
df_monitorings = {} # ЭТО СЛОВАРЬ ДАТАФРЕЙМОВ, ГДЕ КЛЮЧ - НОМЕР МЕСЯЦА, ЗНАЧЕНИЕ - ДАТАФРЕЙМ
with zipfile.ZipFile(file_path, 'r') as zip_ref:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
for month in range(1, 13):
@@ -103,7 +87,70 @@ class MonitoringFuelParser(ParserPort):
return df_monitorings
def aggregate_by_columns(self, df_dict: Dict[str, pd.DataFrame], columns):
def find_header_row(self, file_path: str, sheet: str, search_value: str = "Установка", max_rows: int = 50) -> int:
"""Определение индекса заголовка в Excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
df_temp = pd.read_excel(
file_path,
sheet_name=sheet,
header=None,
nrows=max_rows,
engine='openpyxl'
)
# Ищем строку, где хотя бы в одном столбце встречается искомое значение
for idx, row in df_temp.iterrows():
if row.astype(str).str.strip().str.contains(f"^{search_value}$", case=False, regex=True).any():
print(f"Заголовок найден в строке {idx} (Excel: {idx + 1})")
return idx + 1 # возвращаем индекс строки (0-based)
raise ValueError(f"Не найдена строка с заголовком '{search_value}' в первых {max_rows} строках.")
def parse_single(self, file, sheet, header_num=None):
''' Собственно парсер отчетов одного объекта'''
# Автоопределение header_num, если не передан
if header_num is None:
header_num = self.find_header_row(file, sheet, search_value="Установка")
# Читаем весь лист, начиная с найденной строки как заголовок
df_full = pd.read_excel(
file,
sheet_name=sheet,
header=header_num,
usecols=None,
index_col=None,
engine='openpyxl'
)
# === Удаление полностью пустых столбцов ===
df_clean = df_full.replace(r'^\s*$', pd.NA, regex=True) # заменяем пустые строки на NA
df_clean = df_clean.dropna(axis=1, how='all') # удаляем столбцы, где все значения — NA
df_full = df_full.loc[:, df_clean.columns] # оставляем только непустые столбцы
# === Переименовываем нужные столбцы по позициям ===
if len(df_full.columns) < 2:
raise ValueError("DataFrame должен содержать как минимум 2 столбца.")
new_columns = df_full.columns.tolist()
new_columns[0] = 'name'
new_columns[1] = 'normativ'
new_columns[-2] = 'total'
new_columns[-1] = 'total_1'
df_full.columns = new_columns
# Проверяем, что колонка 'name' существует
if 'name' in df_full.columns:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
# df_full['id'] = df_full['name'].apply(get_object_by_name) # This line was removed as per new_code
pass # Placeholder for new_code
# Устанавливаем id как индекс
df_full.set_index('id', inplace=True)
print(f"Окончательное количество столбцов: {len(df_full.columns)}")
return df_full
def aggregate_by_columns(self, df_dict: Dict[str, pd.DataFrame], columns: list) -> Tuple[pd.DataFrame, Dict[str, pd.DataFrame]]:
''' Служебная функция. Агрегация данных по среднему по определенным колонкам. '''
all_data = {} # Для хранения полных данных (месяцы) по каждой колонке
means = {} # Для хранения средних
@@ -185,22 +232,3 @@ class MonitoringFuelParser(ParserPort):
total.name = 'mean'
return total, df_combined
def get_value(self, df, params):
mode = params.get("mode", "total")
columns = params.get("columns", None)
month = params.get("month", None)
data = None
if mode == "total":
if not columns:
raise ValueError("Отсутствуют идентификаторы столбцов")
df_means, _ = self.aggregate_by_columns(df, columns)
data = df_means.to_dict(orient='index')
elif mode == "month":
if not month:
raise ValueError("Отсутствуют идентификатор месяца")
df_month = self.get_month(df, month)
data = df_month.to_dict(orient='index')
json_result = data_to_json(data)
return json_result

View File

@@ -6,85 +6,48 @@ from adapters.pconfig import get_og_by_name
class SvodkaCAParser(ParserPort):
"""Парсер для сводки СА"""
"""Парсер для сводок СА"""
name = "Сводка СА"
name = "Сводки СА"
def extract_all_tables(self, file_path, sheet_name=0):
"""Извлекает все таблицы из Excel файла"""
df = pd.read_excel(file_path, sheet_name=sheet_name, header=None)
df_filled = df.fillna('')
df_clean = df_filled.astype(str).replace(r'^\s*$', '', regex=True)
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
self.register_getter(
name="get_data",
method=self._get_data_wrapper,
required_params=["modes", "tables"],
optional_params=[],
description="Получение данных по режимам и таблицам"
)
non_empty_rows = ~(df_clean.eq('').all(axis=1))
non_empty_cols = ~(df_clean.eq('').all(axis=0))
def _get_data_wrapper(self, params: dict):
"""Обертка для получения данных (для совместимости)"""
modes = params["modes"]
tables = params["tables"]
row_indices = non_empty_rows[non_empty_rows].index.tolist()
col_indices = non_empty_cols[non_empty_cols].index.tolist()
if not isinstance(modes, list):
raise ValueError("Поле 'modes' должно быть списком")
if not isinstance(tables, list):
raise ValueError("Поле 'tables' должно быть списком")
if not row_indices or not col_indices:
return []
# TODO: Переделать под новую архитектуру
data_dict = {}
for mode in modes:
data_dict[mode] = self.get_data(self.df, mode, tables)
return self.data_dict_to_json(data_dict)
row_blocks = self._get_contiguous_blocks(row_indices)
col_blocks = self._get_contiguous_blocks(col_indices)
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_svodka_ca(file_path, params)
return self.df
tables = []
for r_start, r_end in row_blocks:
for c_start, c_end in col_blocks:
block = df.iloc[r_start:r_end + 1, c_start:c_end + 1]
if block.empty or block.fillna('').astype(str).replace(r'^\s*$', '', regex=True).eq('').all().all():
continue
def parse_svodka_ca(self, file_path: str, params: dict) -> dict:
"""Парсинг сводки СА"""
# Получаем параметры из params
sheet_name = params.get('sheet_name', 0) # По умолчанию первый лист
inclusion_list = params.get('inclusion_list', {'ТиП', 'Топливо', 'Потери'})
if self._is_header_row(block.iloc[0]):
block.columns = block.iloc[0]
block = block.iloc[1:].reset_index(drop=True)
else:
block = block.reset_index(drop=True)
block.columns = [f"col_{i}" for i in range(block.shape[1])]
tables.append(block)
return tables
def _get_contiguous_blocks(self, indices):
"""Группирует индексы в непрерывные блоки"""
if not indices:
return []
blocks = []
start = indices[0]
for i in range(1, len(indices)):
if indices[i] != indices[i-1] + 1:
blocks.append((start, indices[i-1]))
start = indices[i]
blocks.append((start, indices[-1]))
return blocks
def _is_header_row(self, series):
"""Определяет, похожа ли строка на заголовок"""
series_str = series.astype(str).str.strip()
non_empty = series_str[series_str != '']
if len(non_empty) == 0:
return False
def is_not_numeric(val):
try:
float(val.replace(',', '.'))
return False
except (ValueError, TypeError):
return True
not_numeric_count = non_empty.apply(is_not_numeric).sum()
return not_numeric_count / len(non_empty) > 0.6
def _get_og_by_name(self, name):
"""Функция для получения ID по имени (упрощенная версия)"""
# Упрощенная версия - возвращаем имя как есть
if not name or not isinstance(name, str):
return None
return name.strip()
def parse_sheet(self, file_path, sheet_name, inclusion_list):
"""Собственно функция парсинга отчета СА"""
# === Извлечение и фильтрация ===
tables = self.extract_all_tables(file_path, sheet_name)
@@ -190,76 +153,185 @@ class SvodkaCAParser(ParserPort):
else:
return None
def parse(self, file_path: str, params: dict) -> dict:
"""Парсинг файла сводки СА"""
# === Точка входа. Нужно выгрузить три таблицы: План, Факт и Норматив ===
# Выгружаем План в df_ca_plan
inclusion_list_plan = {
"ТиП, %",
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн**",
"в т.ч. Идентифицированные безвозвратные потери, %**",
"в т.ч. Неидентифицированные потери, тонн**",
"в т.ч. Неидентифицированные потери, %**"
}
def extract_all_tables(self, file_path, sheet_name=0):
"""Извлечение всех таблиц из Excel файла"""
df = pd.read_excel(file_path, sheet_name=sheet_name, header=None, engine='openpyxl')
df_filled = df.fillna('')
df_clean = df_filled.astype(str).replace(r'^\s*$', '', regex=True)
df_ca_plan = self.parse_sheet(file_path, 'План', inclusion_list_plan) # ЭТО ДАТАФРЕЙМ ПЛАНА В СВОДКЕ ЦА
print(f"\n--- Объединённый и отсортированный План: {df_ca_plan.shape} ---")
non_empty_rows = ~(df_clean.eq('').all(axis=1))
non_empty_cols = ~(df_clean.eq('').all(axis=0))
# Выгружаем Факт
inclusion_list_fact = {
"ТиП, %",
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн",
"в т.ч. Идентифицированные безвозвратные потери, %",
"в т.ч. Неидентифицированные потери, тонн",
"в т.ч. Неидентифицированные потери, %"
}
row_indices = non_empty_rows[non_empty_rows].index.tolist()
col_indices = non_empty_cols[non_empty_cols].index.tolist()
df_ca_fact = self.parse_sheet(file_path, 'Факт', inclusion_list_fact) # ЭТО ДАТАФРЕЙМ ФАКТА В СВОДКЕ ЦА
print(f"\n--- Объединённый и отсортированный Факт: {df_ca_fact.shape} ---")
if not row_indices or not col_indices:
return []
# Выгружаем План в df_ca_normativ
inclusion_list_normativ = {
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн**",
"в т.ч. Идентифицированные безвозвратные потери, %**",
"в т.ч. Неидентифицированные потери, тонн**",
"в т.ч. Неидентифицированные потери, %**"
}
row_blocks = self._get_contiguous_blocks(row_indices)
col_blocks = self._get_contiguous_blocks(col_indices)
# ЭТО ДАТАФРЕЙМ НОРМАТИВА В СВОДКЕ ЦА
df_ca_normativ = self.parse_sheet(file_path, 'Норматив', inclusion_list_normativ)
tables = []
for r_start, r_end in row_blocks:
for c_start, c_end in col_blocks:
block = df.iloc[r_start:r_end + 1, c_start:c_end + 1]
if block.empty or block.fillna('').astype(str).replace(r'^\s*$', '', regex=True).eq('').all().all():
continue
print(f"\n--- Объединённый и отсортированный Норматив: {df_ca_normativ.shape} ---")
if self._is_header_row(block.iloc[0]):
block.columns = block.iloc[0]
block = block.iloc[1:].reset_index(drop=True)
else:
block = block.reset_index(drop=True)
block.columns = [f"col_{i}" for i in range(block.shape[1])]
df_dict = {
"plan": df_ca_plan,
"fact": df_ca_fact,
"normativ": df_ca_normativ
}
return df_dict
tables.append(block)
return tables
def _get_contiguous_blocks(self, indices):
"""Группирует индексы в непрерывные блоки"""
if not indices:
return []
blocks = []
start = indices[0]
for i in range(1, len(indices)):
if indices[i] != indices[i-1] + 1:
blocks.append((start, indices[i-1]))
start = indices[i]
blocks.append((start, indices[-1]))
return blocks
def _is_header_row(self, series):
"""Определяет, похожа ли строка на заголовок"""
series_str = series.astype(str).str.strip()
non_empty = series_str[series_str != '']
if len(non_empty) == 0:
return False
def is_not_numeric(val):
try:
float(val.replace(',', '.'))
return False
except (ValueError, TypeError):
return True
not_numeric_count = non_empty.apply(is_not_numeric).sum()
return not_numeric_count / len(non_empty) > 0.6
def _get_og_by_name(self, name):
"""Функция для получения ID по имени (упрощенная версия)"""
# Упрощенная версия - возвращаем имя как есть
if not name or not isinstance(name, str):
return None
return name.strip()
def parse_sheet(self, file_path: str, sheet_name: str, inclusion_list: set) -> pd.DataFrame:
"""Парсинг листа Excel"""
# === Извлечение и фильтрация ===
tables = self.extract_all_tables(file_path, sheet_name)
# Фильтруем таблицы: оставляем только те, где первая строка содержит нужные заголовки
filtered_tables = []
for table in tables:
if table.empty:
continue
first_row_values = table.iloc[0].astype(str).str.strip().tolist()
if any(val in inclusion_list for val in first_row_values):
filtered_tables.append(table)
tables = filtered_tables
# === Итоговый список таблиц датафреймов ===
result_list = []
for table in tables:
if table.empty:
continue
# Получаем первую строку (до удаления)
first_row_values = table.iloc[0].astype(str).str.strip().tolist()
# Находим, какой элемент из inclusion_list присутствует
matched_key = None
for val in first_row_values:
if val in inclusion_list:
matched_key = val
break # берём первый совпадающий заголовок
if matched_key is None:
continue # на всякий случай (хотя уже отфильтровано)
# Удаляем первую строку (заголовок) и сбрасываем индекс
df_cleaned = table.iloc[1:].copy().reset_index(drop=True)
# Пропускаем, если таблица пустая
if df_cleaned.empty:
continue
# Первая строка становится заголовком
new_header = df_cleaned.iloc[0] # извлекаем первую строку как потенциальные названия столбцов
# Преобразуем заголовок: только первый столбец может быть заменён на "name"
cleaned_header = []
# Обрабатываем первый столбец отдельно
first_item = new_header.iloc[0] if isinstance(new_header, pd.Series) else new_header[0]
first_item_str = str(first_item).strip() if pd.notna(first_item) else ""
if first_item_str == "" or first_item_str == "nan":
cleaned_header.append("name")
else:
cleaned_header.append(first_item_str)
# Остальные столбцы добавляем без изменений (или с минимальной очисткой)
for item in new_header[1:]:
# Опционально: приводим к строке и убираем лишние пробелы, но не заменяем на "name"
item_str = str(item).strip() if pd.notna(item) else ""
cleaned_header.append(item_str)
# Применяем очищенные названия столбцов
df_cleaned = df_cleaned[1:] # удаляем строку с заголовком
df_cleaned.columns = cleaned_header
df_cleaned = df_cleaned.reset_index(drop=True)
if matched_key.endswith('**'):
cleaned_key = matched_key[:-2] # удаляем последние **
else:
cleaned_key = matched_key
# Добавляем новую колонку с именем параметра
df_cleaned["table"] = cleaned_key
# Проверяем, что колонка 'name' существует
if 'name' not in df_cleaned.columns:
print(
f"Внимание: колонка 'name' отсутствует в таблице для '{matched_key}'. Пропускаем добавление 'id'.")
continue # или обработать по-другому
else:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
df_cleaned['id'] = df_cleaned['name'].apply(get_og_by_name)
# Удаляем строки, где id — None, NaN или пустой
df_cleaned = df_cleaned.dropna(subset=['id']) # dropna удаляет NaN
# Дополнительно: удаляем None (если не поймал dropna)
df_cleaned = df_cleaned[df_cleaned['id'].notna() & (df_cleaned['id'].astype(str) != 'None')]
# Добавляем в словарь
result_list.append(df_cleaned)
# === Объединение и сортировка по id (индекс) и table ===
if result_list:
combined_df = pd.concat(result_list, axis=0)
# Сортируем по индексу (id) и по столбцу 'table'
combined_df = combined_df.sort_values(by=['id', 'table'], axis=0)
# Устанавливаем id как индекс
# combined_df.set_index('id', inplace=True)
return combined_df
else:
return None
def data_dict_to_json(self, data_dict):
''' Служебная функция для парсинга словаря в json. '''
@@ -308,17 +380,3 @@ class SvodkaCAParser(ParserPort):
filtered_df = df[df['table'].isin(table_values)].copy()
result_dict = {key: group for key, group in filtered_df.groupby('table')}
return result_dict
def get_value(self, df: pd.DataFrame, params: dict):
modes = params.get("modes")
tables = params.get("tables")
if not isinstance(modes, list):
raise ValueError("Поле 'modes' должно быть списком")
if not isinstance(tables, list):
raise ValueError("Поле 'tables' должно быть списком")
# Собираем данные
data_dict = {}
for mode in modes:
data_dict[mode] = self.get_data(df, mode, tables)
return self.data_dict_to_json(data_dict)

View File

@@ -9,6 +9,60 @@ class SvodkaPMParser(ParserPort):
name = "Сводки ПМ"
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
self.register_getter(
name="single_og",
method=self._get_single_og,
required_params=["id", "codes", "columns"],
optional_params=["search"],
description="Получение данных по одному ОГ"
)
self.register_getter(
name="total_ogs",
method=self._get_total_ogs,
required_params=["codes", "columns"],
optional_params=["search"],
description="Получение данных по всем ОГ"
)
def _get_single_og(self, params: dict):
"""Получение данных по одному ОГ (обертка для совместимости)"""
og_id = params["id"]
codes = params["codes"]
columns = params["columns"]
search = params.get("search")
if not isinstance(codes, list):
raise ValueError("Поле 'codes' должно быть списком")
if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
# Здесь нужно получить DataFrame из self.df, но пока используем старую логику
# TODO: Переделать под новую архитектуру
return self.get_svodka_og(self.df, og_id, codes, columns, search)
def _get_total_ogs(self, params: dict):
"""Получение данных по всем ОГ (обертка для совместимости)"""
codes = params["codes"]
columns = params["columns"]
search = params.get("search")
if not isinstance(codes, list):
raise ValueError("Поле 'codes' должно быть списком")
if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
# TODO: Переделать под новую архитектуру
return self.get_svodka_total(self.df, codes, columns, search)
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_svodka_pm_files(file_path, params)
return self.df
def find_header_row(self, file: str, sheet: str, search_value: str = "Итого", max_rows: int = 50) -> int:
"""Определения индекса заголовка в excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
@@ -16,7 +70,8 @@ class SvodkaPMParser(ParserPort):
file,
sheet_name=sheet,
header=None,
nrows=max_rows
nrows=max_rows,
engine='openpyxl'
)
# Ищем строку, где хотя бы в одном столбце встречается искомое значение
@@ -40,6 +95,7 @@ class SvodkaPMParser(ParserPort):
header=header_num,
usecols=None,
nrows=2,
engine='openpyxl'
)
if df_probe.shape[0] == 0:
@@ -61,7 +117,8 @@ class SvodkaPMParser(ParserPort):
sheet_name=sheet,
header=header_num,
usecols=None,
index_col=None
index_col=None,
engine='openpyxl'
)
if indicator_col_name not in df_full.columns:
@@ -99,25 +156,25 @@ class SvodkaPMParser(ParserPort):
# Проверяем, является ли колонка пустой/некорректной
is_empty_or_unnamed = col_str.startswith('Unnamed') or col_str == '' or col_str.lower() == 'nan'
# Проверяем, начинается ли на "Итого"
if col_str.startswith('Итого'):
current_name = 'Итого'
last_good_name = current_name # обновляем last_good_name
new_columns.append(current_name)
elif is_empty_or_unnamed:
# Используем последнее хорошее имя
new_columns.append(last_good_name)
if is_empty_or_unnamed:
# Если это пустая колонка, используем последнее хорошее имя
if last_good_name:
new_columns.append(last_good_name)
else:
# Если нет хорошего имени, пропускаем
continue
else:
# Имя, полученное из exel
# Это хорошая колонка
last_good_name = col_str
new_columns.append(col_str)
# Применяем новые заголовки
df_final.columns = new_columns
print(f"Окончательное количество столбцов: {len(df_final.columns)}")
return df_final
def parse(self, file_path: str, params: dict) -> dict:
def parse_svodka_pm_files(self, zip_path: str, params: dict) -> dict:
"""Парсинг ZIP архива со сводками ПМ"""
import zipfile
pm_dict = {
"facts": {},
@@ -125,7 +182,7 @@ class SvodkaPMParser(ParserPort):
}
excel_fact_template = 'svodka_fact_pm_ID.xlsm'
excel_plan_template = 'svodka_plan_pm_ID.xlsx'
with zipfile.ZipFile(file_path, 'r') as zip_ref:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
for name, id in OG_IDS.items():
if id == 'BASH':
@@ -155,9 +212,9 @@ class SvodkaPMParser(ParserPort):
return pm_dict
def get_svodka_value(self, df_svodka, id, code, search_value=None):
''' Служебная функция для простой выборке по сводке '''
row_index = id
def get_svodka_value(self, df_svodka, code, search_value, search_value_filter=None):
''' Служебная функция получения значения по коду и столбцу '''
row_index = code
mask_value = df_svodka.iloc[0] == code
if search_value is None:
@@ -254,22 +311,4 @@ class SvodkaPMParser(ParserPort):
return total_result
def get_value(self, df, params):
og_id = params.get("id")
codes = params.get("codes")
columns = params.get("columns")
search = params.get("search")
mode = params.get("mode", "total")
if not isinstance(codes, list):
raise ValueError("Поле 'codes' должно быть списком")
if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
data = None
if mode == "single":
if not og_id:
raise ValueError("Отсутствует идентификатор ОГ")
data = self.get_svodka_og(df, og_id, codes, columns, search)
elif mode == "total":
data = self.get_svodka_total(df, codes, columns, search)
json_result = data_to_json(data)
return json_result
# Убираем старый метод get_value, так как он теперь в базовом классе

View File

@@ -96,6 +96,54 @@ async def get_available_parsers():
return {"parsers": parsers}
@app.get("/parsers/{parser_name}/getters", tags=["Общее"],
summary="Информация о геттерах парсера",
description="Возвращает информацию о доступных геттерах для указанного парсера",
responses={
200: {
"content": {
"application/json": {
"example": {
"parser": "svodka_pm",
"getters": {
"single_og": {
"required_params": ["id", "codes", "columns"],
"optional_params": ["search"],
"description": "Получение данных по одному ОГ"
},
"total_ogs": {
"required_params": ["codes", "columns"],
"optional_params": ["search"],
"description": "Получение данных по всем ОГ"
}
}
}
}
}
},
404: {
"description": "Парсер не найден"
}
})
async def get_parser_getters(parser_name: str):
"""Получение информации о геттерах парсера"""
if parser_name not in PARSERS:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Парсер '{parser_name}' не найден"
)
parser_class = PARSERS[parser_name]
parser_instance = parser_class()
getters_info = parser_instance.get_available_getters()
return {
"parser": parser_name,
"getters": getters_info
}
@app.get("/server-info", tags=["Общее"],
summary="Информация о сервере",
response_model=ServerInfoResponse,)
@@ -352,40 +400,40 @@ async def get_svodka_pm_total_ogs(
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# @app.post("/svodka_pm/get_data", tags=[SvodkaPMParser.name])
# async def get_svodka_pm_data(
# request_data: dict
# ):
# report_service = get_report_service()
# """
# Получение данных из отчета сводки факта СарНПЗ
@app.post("/svodka_pm/get_data", tags=[SvodkaPMParser.name])
async def get_svodka_pm_data(
request_data: dict
):
report_service = get_report_service()
"""
Получение данных из отчета сводки факта СарНПЗ
# - indicator_id: ID индикатора
# - code: Код для поиска
# - search_value: Опциональное значение для поиска
# """
# try:
# # Создаем запрос
# request = DataRequest(
# report_type='svodka_pm',
# get_params=request_data
# )
- indicator_id: ID индикатора
- code: Код для поиска
- search_value: Опциональное значение для поиска
"""
try:
# Создаем запрос
request = DataRequest(
report_type='svodka_pm',
get_params=request_data
)
# # Получаем данные
# result = report_service.get_data(request)
# Получаем данные
result = report_service.get_data(request)
# if result.success:
# return {
# "success": True,
# "data": result.data
# }
# else:
# raise HTTPException(status_code=404, detail=result.message)
if result.success:
return {
"success": True,
"data": result.data
}
else:
raise HTTPException(status_code=404, detail=result.message)
# except HTTPException:
# raise
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
@app.post("/svodka_ca/upload", tags=[SvodkaCAParser.name],
@@ -562,38 +610,38 @@ async def get_svodka_ca_data(
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# @app.post("/monitoring_fuel/get_data", tags=[MonitoringFuelParser.name])
# async def get_monitoring_fuel_data(
# request_data: dict
# ):
# report_service = get_report_service()
# """
# Получение данных из отчета мониторинга топлива
@app.post("/monitoring_fuel/get_data", tags=[MonitoringFuelParser.name])
async def get_monitoring_fuel_data(
request_data: dict
):
report_service = get_report_service()
"""
Получение данных из отчета мониторинга топлива
# - column: Название колонки для агрегации (normativ, total, total_svod)
# """
# try:
# # Создаем запрос
# request = DataRequest(
# report_type='monitoring_fuel',
# get_params=request_data
# )
- column: Название колонки для агрегации (normativ, total, total_svod)
"""
try:
# Создаем запрос
request = DataRequest(
report_type='monitoring_fuel',
get_params=request_data
)
# # Получаем данные
# result = report_service.get_data(request)
# Получаем данные
result = report_service.get_data(request)
# if result.success:
# return {
# "success": True,
# "data": result.data
# }
# else:
# raise HTTPException(status_code=404, detail=result.message)
if result.success:
return {
"success": True,
"data": result.data
}
else:
raise HTTPException(status_code=404, detail=result.message)
# except HTTPException:
# raise
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# @app.post("/monitoring_fuel/upload_directory", tags=[MonitoringFuelParser.name])

View File

@@ -2,28 +2,93 @@
Порты (интерфейсы) для hexagonal architecture
"""
from abc import ABC, abstractmethod
from typing import Optional
from typing import Optional, Dict, List, Any, Callable
import pandas as pd
class ParserPort(ABC):
"""Интерфейс для парсеров"""
"""Интерфейс для парсеров с поддержкой множественных геттеров"""
def __init__(self):
"""Инициализация с пустым словарем геттеров"""
self.getters: Dict[str, Dict[str, Any]] = {}
self._register_default_getters()
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию - переопределяется в наследниках"""
pass
def register_getter(self, name: str, method: Callable, required_params: List[str],
optional_params: List[str] = None, description: str = ""):
"""
Регистрация нового геттера
Args:
name: Имя геттера
method: Метод для выполнения
required_params: Список обязательных параметров
optional_params: Список необязательных параметров
description: Описание геттера
"""
if optional_params is None:
optional_params = []
self.getters[name] = {
"method": method,
"required_params": required_params,
"optional_params": optional_params,
"description": description
}
def get_available_getters(self) -> Dict[str, Dict[str, Any]]:
"""Получение списка доступных геттеров с их описанием"""
return {
name: {
"required_params": info["required_params"],
"optional_params": info["optional_params"],
"description": info["description"]
}
for name, info in self.getters.items()
}
# Добавить схему
def get_value(self, getter_name: str, params: Dict[str, Any]):
"""
Получение значения через указанный геттер
Args:
getter_name: Имя геттера
params: Параметры для геттера
Returns:
Результат выполнения геттера
Raises:
ValueError: Если геттер не найден или параметры неверны
"""
if getter_name not in self.getters:
available = list(self.getters.keys())
raise ValueError(f"Геттер '{getter_name}' не найден. Доступные: {available}")
getter_info = self.getters[getter_name]
required = getter_info["required_params"]
# Проверка обязательных параметров
missing = [p for p in required if p not in params]
if missing:
raise ValueError(f"Отсутствуют обязательные параметры для геттера '{getter_name}': {missing}")
# Вызов метода геттера
try:
return getter_info["method"](params)
except Exception as e:
raise ValueError(f"Ошибка выполнения геттера '{getter_name}': {str(e)}")
@abstractmethod
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
pass
@abstractmethod
def get_value(self, df: pd.DataFrame, params: dict):
"""Получение значения из DataFrame по параметрам"""
pass
# @abstractmethod
# def get_schema(self) -> dict:
# """Возвращает схему входных параметров для парсера"""
# pass
class StoragePort(ABC):
"""Интерфейс для хранилища данных"""

View File

@@ -100,8 +100,34 @@ class ReportService:
# Получаем парсер
parser = get_parser(request.report_type)
# Получаем значение
value = parser.get_value(df, request.get_params)
# Устанавливаем DataFrame в парсер для использования в геттерах
parser.df = df
# Получаем параметры запроса
get_params = request.get_params or {}
# Определяем имя геттера (по умолчанию используем первый доступный)
getter_name = get_params.pop("getter", None)
if not getter_name:
# Если геттер не указан, берем первый доступный
available_getters = list(parser.getters.keys())
if available_getters:
getter_name = available_getters[0]
print(f"⚠️ Геттер не указан, используем первый доступный: {getter_name}")
else:
return DataResult(
success=False,
message="Парсер не имеет доступных геттеров"
)
# Получаем значение через указанный геттер
try:
value = parser.get_value(getter_name, get_params)
except ValueError as e:
return DataResult(
success=False,
message=f"Ошибка параметров: {str(e)}"
)
# Формируем результат
if value is not None:

View File

@@ -1 +0,0 @@
{"version":"1","format":"xl-single","id":"29118f57-702e-4363-9a41-9f06655e449d","xl":{"version":"3","this":"195a90f4-fc26-46a8-b6d4-0b50b99b1342","sets":[["195a90f4-fc26-46a8-b6d4-0b50b99b1342"]],"distributionAlgo":"SIPMOD+PARITY"}}

View File

@@ -1,19 +1,28 @@
#!/usr/bin/env python3
"""
Запуск Streamlit интерфейса для NIN Excel Parsers API
Запуск Streamlit интерфейса локально из изолированного пакета
"""
import subprocess
import sys
import webbrowser
import time
import os
def main():
"""Основная функция"""
print("🚀 ЗАПУСК STREAMLIT ИНТЕРФЕЙСА")
print("=" * 50)
print("🚀 ЗАПУСК STREAMLIT ИЗ ИЗОЛИРОВАННОГО ПАКЕТА")
print("=" * 60)
print("Убедитесь, что FastAPI сервер запущен на порту 8000")
print("=" * 50)
print("=" * 60)
# Проверяем, существует ли папка streamlit_app
if not os.path.exists("streamlit_app"):
print("❌ Папка streamlit_app не найдена")
print("Создайте изолированный пакет или используйте docker-compose up -d")
return
# Переходим в папку streamlit_app
os.chdir("streamlit_app")
# Проверяем, установлен ли Streamlit
try:
@@ -21,11 +30,12 @@ def main():
print(f"✅ Streamlit {streamlit.__version__} установлен")
except ImportError:
print("❌ Streamlit не установлен")
print("Установите: pip install streamlit")
print("Установите: pip install -r requirements.txt")
return
print("\n🚀 Запускаю Streamlit...")
print("📍 URL: http://localhost:8501")
print("🔗 API: http://localhost:8000")
print("🛑 Для остановки нажмите Ctrl+C")
# Открываем браузер
@@ -35,15 +45,19 @@ def main():
except Exception as e:
print(f"⚠️ Не удалось открыть браузер: {e}")
# Запускаем Streamlit
# Запускаем Streamlit с правильными переменными окружения
env = os.environ.copy()
env["DOCKER_ENV"] = "false" # Локальный запуск
env["API_BASE_URL"] = "http://localhost:8000" # Локальный API
try:
subprocess.run([
sys.executable, "-m", "streamlit", "run", "streamlit_app.py",
sys.executable, "-m", "streamlit", "run", "app.py",
"--server.port", "8501",
"--server.address", "localhost",
"--server.headless", "false",
"--browser.gatherUsageStats", "false"
])
], env=env)
except KeyboardInterrupt:
print("\n👋 Streamlit остановлен")

View File

@@ -0,0 +1,31 @@
__pycache__
*.pyc
*.pyo
*.pyd
.Python
env
pip-log.txt
pip-delete-this-directory.txt
.tox
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.log
.git
.mypy_cache
.pytest_cache
.hypothesis
.DS_Store
.env
.venv
venv/
ENV/
env/
.idea/
.vscode/
*.swp
*.swo
*~

23
streamlit_app/Dockerfile Normal file
View File

@@ -0,0 +1,23 @@
FROM python:3.11-slim
WORKDIR /app
# Устанавливаем системные зависимости
RUN apt-get update && apt-get install -y \
gcc \
&& rm -rf /var/lib/apt/lists/*
# Копируем файлы зависимостей
COPY requirements.txt .
# Устанавливаем Python зависимости
RUN pip install --no-cache-dir -r requirements.txt
# Копируем код приложения
COPY . .
# Открываем порт
EXPOSE 8501
# Команда запуска
CMD ["streamlit", "run", "app.py", "--server.port", "8501", "--server.address", "0.0.0.0"]

44
streamlit_app/README.md Normal file
View File

@@ -0,0 +1,44 @@
# 📊 Streamlit App - NIN Excel Parsers API
Изолированное Streamlit приложение для демонстрации работы NIN Excel Parsers API.
## 🚀 Запуск
### Локально:
```bash
cd streamlit_app
pip install -r requirements.txt
streamlit run app.py
```
### В Docker:
```bash
docker build -t streamlit-app .
docker run -p 8501:8501 streamlit-app
```
## 🔧 Конфигурация
### Переменные окружения:
- `API_BASE_URL` - адрес FastAPI сервера (по умолчанию: `http://fastapi:8000`)
### Параметры Streamlit:
- Порт: 8501
- Адрес: 0.0.0.0 (для Docker)
- Режим: headless (для Docker)
## 📁 Структура
```
streamlit_app/
├── app.py # Основное приложение
├── requirements.txt # Зависимости Python
├── Dockerfile # Docker образ
├── .streamlit/ # Конфигурация Streamlit
│ └── config.toml # Настройки
└── README.md # Документация
```
## 🌐 Доступ
После запуска приложение доступно по адресу: **http://localhost:8501**

View File

@@ -15,8 +15,17 @@ st.set_page_config(
initial_sidebar_state="expanded"
)
# Конфигурация API
API_BASE_URL = os.getenv("API_BASE_URL", "http://localhost:8000")
# Конфигурация API - автоматически определяем правильный адрес
def get_api_base_url():
"""Автоматически определяет правильный адрес API"""
# Если запущено в Docker, используем внутренний адрес
if os.getenv("DOCKER_ENV") == "true":
return "http://fastapi:8000"
# Если запущено локально, используем localhost
return "http://localhost:8000"
API_BASE_URL = os.getenv("API_BASE_URL", get_api_base_url())
def check_api_health():
"""Проверка доступности API"""
@@ -36,6 +45,16 @@ def get_available_parsers():
except:
return []
def get_parser_getters(parser_name: str):
"""Получение информации о геттерах парсера"""
try:
response = requests.get(f"{API_BASE_URL}/parsers/{parser_name}/getters")
if response.status_code == 200:
return response.json()
return {}
except:
return {}
def get_server_info():
"""Получение информации о сервере"""
try:
@@ -105,6 +124,9 @@ def main():
with tab1:
st.header("📊 Сводки ПМ - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("svodka_pm")
# Секция загрузки файлов
st.subheader("📤 Загрузка файлов")
uploaded_pm = st.file_uploader(
@@ -133,6 +155,15 @@ def main():
# Секция получения данных
st.subheader("🔍 Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2)
with col1:
@@ -164,12 +195,13 @@ def main():
if codes and columns:
with st.spinner("Получаю данные..."):
data = {
"getter": "single_og",
"id": og_id,
"codes": codes,
"columns": columns
}
result, status = make_api_request("/svodka_pm/get_single_og", data)
result, status = make_api_request("/svodka_pm/get_data", data)
if status == 200:
st.success("✅ Данные получены")
@@ -200,11 +232,12 @@ def main():
if codes_total and columns_total:
with st.spinner("Получаю данные..."):
data = {
"getter": "total_ogs",
"codes": codes_total,
"columns": columns_total
}
result, status = make_api_request("/svodka_pm/get_total_ogs", data)
result, status = make_api_request("/svodka_pm/get_data", data)
if status == 200:
st.success("✅ Данные получены")
@@ -218,6 +251,9 @@ def main():
with tab2:
st.header("🏭 Сводки СА - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("svodka_ca")
# Секция загрузки файлов
st.subheader("📤 Загрузка файлов")
uploaded_ca = st.file_uploader(
@@ -245,7 +281,16 @@ def main():
st.markdown("---")
# Секция получения данных
st.subheader("🔍 Получение данных")
st.subheader("<EFBFBD><EFBFBD> Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2)
@@ -254,8 +299,8 @@ def main():
modes = st.multiselect(
"Выберите режимы",
["План", "Факт", "Норматив"],
default=["План", "Факт"],
["plan", "fact", "normativ"],
default=["plan", "fact"],
key="ca_modes"
)
@@ -272,6 +317,7 @@ def main():
if modes and tables:
with st.spinner("Получаю данные..."):
data = {
"getter": "get_data",
"modes": modes,
"tables": tables
}
@@ -282,7 +328,7 @@ def main():
st.success("✅ Данные получены")
st.json(result)
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
st.error(f"❌ Ошибка: {result.get('message', f'Неизвестная ошибка: {status}')}")
else:
st.warning("⚠️ Выберите режимы и таблицы")
@@ -290,6 +336,9 @@ def main():
with tab3:
st.header("⛽ Мониторинг топлива - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("monitoring_fuel")
# Секция загрузки файлов
st.subheader("📤 Загрузка файлов")
uploaded_fuel = st.file_uploader(
@@ -318,6 +367,15 @@ def main():
# Секция получения данных
st.subheader("🔍 Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2)
with col1:
@@ -334,10 +392,11 @@ def main():
if columns_fuel:
with st.spinner("Получаю данные..."):
data = {
"getter": "total_by_columns",
"columns": columns_fuel
}
result, status = make_api_request("/monitoring_fuel/get_total_by_columns", data)
result, status = make_api_request("/monitoring_fuel/get_data", data)
if status == 200:
st.success("✅ Данные получены")
@@ -359,10 +418,11 @@ def main():
if st.button("🔍 Получить данные за месяц", key="fuel_month_btn"):
with st.spinner("Получаю данные..."):
data = {
"getter": "month_by_code",
"month": month
}
result, status = make_api_request("/monitoring_fuel/get_month_by_code", data)
result, status = make_api_request("/monitoring_fuel/get_data", data)
if status == 200:
st.success("✅ Данные получены")

View File

@@ -0,0 +1,4 @@
streamlit>=1.28.0
requests>=2.31.0
pandas>=1.5.0
numpy>=1.24.0

84
test_api.py Normal file
View File

@@ -0,0 +1,84 @@
#!/usr/bin/env python3
"""
Тестовый скрипт для проверки API
"""
import requests
import json
def test_api_endpoints():
"""Тестирование API эндпоинтов"""
base_url = "http://localhost:8000"
print("🧪 ТЕСТИРОВАНИЕ API")
print("=" * 50)
# Тест 1: Проверка доступности API
print("\n1⃣ Проверка доступности API...")
try:
response = requests.get(f"{base_url}/")
if response.status_code == 200:
print(f"✅ API доступен: {response.json()}")
else:
print(f"❌ API недоступен: {response.status_code}")
return False
except Exception as e:
print(f"❌ Ошибка подключения к API: {e}")
return False
# Тест 2: Список парсеров
print("\n2⃣ Получение списка парсеров...")
try:
response = requests.get(f"{base_url}/parsers")
if response.status_code == 200:
parsers = response.json()
print(f"✅ Парсеры: {parsers}")
else:
print(f"❌ Ошибка получения парсеров: {response.status_code}")
except Exception as e:
print(f"❌ Ошибка: {e}")
# Тест 3: Информация о геттерах
print("\n3⃣ Информация о геттерах парсеров...")
parsers_to_test = ["svodka_pm", "svodka_ca", "monitoring_fuel"]
for parser in parsers_to_test:
try:
response = requests.get(f"{base_url}/parsers/{parser}/getters")
if response.status_code == 200:
getters = response.json()
print(f"{parser}: {len(getters.get('getters', {}))} геттеров")
else:
print(f"{parser}: ошибка {response.status_code}")
except Exception as e:
print(f"{parser}: ошибка {e}")
# Тест 4: Загрузка тестового файла
print("\n4⃣ Тест загрузки файла...")
try:
# Создаем простой Excel файл для теста
test_data = b"test content"
files = {"file": ("test.xlsx", test_data, "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")}
response = requests.post(f"{base_url}/svodka_ca/upload", files=files)
print(f"📤 Результат загрузки: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Файл загружен: {result}")
else:
print(f"❌ Ошибка загрузки: {response.status_code}")
try:
error_detail = response.json()
print(f"📋 Детали ошибки: {error_detail}")
except:
print(f"📋 Текст ошибки: {response.text}")
except Exception as e:
print(f"❌ Ошибка теста загрузки: {e}")
print("\n🎯 Тестирование завершено!")
return True
if __name__ == "__main__":
test_api_endpoints()

79
test_api_direct.py Normal file
View File

@@ -0,0 +1,79 @@
#!/usr/bin/env python3
"""
Прямое тестирование API эндпоинтов
"""
import requests
import json
def test_api_endpoints():
"""Тестирование API эндпоинтов"""
base_url = "http://localhost:8000"
print("🧪 ПРЯМОЕ ТЕСТИРОВАНИЕ API")
print("=" * 40)
# Тест 1: Проверка доступности API
print("\n1⃣ Проверка доступности API...")
try:
response = requests.get(f"{base_url}/")
print(f"✅ API доступен: {response.status_code}")
except Exception as e:
print(f"❌ Ошибка: {e}")
return
# Тест 2: Тестирование эндпоинта svodka_ca/get_data
print("\n2⃣ Тестирование svodka_ca/get_data...")
try:
data = {
"getter": "get_data",
"modes": ["plan", "fact"],
"tables": ["ТиП", "Топливо"]
}
response = requests.post(f"{base_url}/svodka_ca/get_data", json=data)
print(f"📥 Результат: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Успешно: {result}")
else:
try:
error_detail = response.json()
print(f"❌ Ошибка: {error_detail}")
except:
print(f"❌ Ошибка: {response.text}")
except Exception as e:
print(f"❌ Исключение: {e}")
# Тест 3: Тестирование эндпоинта svodka_pm/get_data
print("\n3⃣ Тестирование svodka_pm/get_data...")
try:
data = {
"getter": "single_og",
"id": "SNPZ",
"codes": [78, 79],
"columns": ["БП", "ПП"]
}
response = requests.post(f"{base_url}/svodka_pm/get_data", json=data)
print(f"📥 Результат: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Успешно: {result}")
else:
try:
error_detail = response.json()
print(f"❌ Ошибка: {error_detail}")
except:
print(f"❌ Ошибка: {response.text}")
except Exception as e:
print(f"❌ Исключение: {e}")
print("\n🎯 Тестирование завершено!")
if __name__ == "__main__":
test_api_endpoints()

96
test_ca_workflow.py Normal file
View File

@@ -0,0 +1,96 @@
#!/usr/bin/env python3
"""
Тестирование полного workflow с сводкой СА
"""
import requests
import os
import time
def test_ca_workflow():
"""Тестирование полного workflow с сводкой СА"""
base_url = "http://localhost:8000"
test_file = "python_parser/data/svodka_ca.xlsx"
print("🧪 ТЕСТ ПОЛНОГО WORKFLOW СВОДКИ СА")
print("=" * 50)
# Проверяем, что файл существует
if not os.path.exists(test_file):
print(f"❌ Файл {test_file} не найден")
return False
print(f"📁 Тестовый файл найден: {test_file}")
print(f"📏 Размер: {os.path.getsize(test_file)} байт")
# Шаг 1: Загружаем файл
print("\n1⃣ Загружаю файл сводки СА...")
try:
with open(test_file, 'rb') as f:
file_data = f.read()
files = {"file": ("svodka_ca.xlsx", file_data, "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")}
response = requests.post(f"{base_url}/svodka_ca/upload", files=files)
print(f"📤 Результат загрузки: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Файл загружен: {result}")
object_id = result.get('object_id', 'nin_excel_data_svodka_ca')
else:
print(f"❌ Ошибка загрузки: {response.status_code}")
try:
error_detail = response.json()
print(f"📋 Детали ошибки: {error_detail}")
except:
print(f"📋 Текст ошибки: {response.text}")
return False
except Exception as e:
print(f"❌ Ошибка загрузки: {e}")
return False
# Шаг 2: Получаем данные через геттер
print("\n2⃣ Получаю данные через геттер...")
try:
data = {
"getter": "get_data",
"modes": ["plan", "fact"], # Используем английские названия
"tables": ["ТиП", "Топливо"]
}
response = requests.post(f"{base_url}/svodka_ca/get_data", json=data)
print(f"📥 Результат получения данных: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Данные получены успешно!")
print(f"📊 Размер ответа: {len(str(result))} символов")
# Показываем структуру данных
if isinstance(result, dict):
print(f"🔍 Структура данных:")
for key, value in result.items():
if isinstance(value, dict):
print(f" {key}: {len(value)} элементов")
else:
print(f" {key}: {type(value).__name__}")
else:
print(f"❌ Ошибка получения данных: {response.status_code}")
try:
error_detail = response.json()
print(f"📋 Детали ошибки: {error_detail}")
except:
print(f"📋 Текст ошибки: {response.text}")
return False
except Exception as e:
print(f"❌ Ошибка получения данных: {e}")
return False
print("\n🎯 Тестирование завершено успешно!")
return True
if __name__ == "__main__":
test_ca_workflow()

110
test_minio_connection.py Normal file
View File

@@ -0,0 +1,110 @@
#!/usr/bin/env python3
"""
Тестовый скрипт для проверки подключения к MinIO
"""
import os
import sys
import io
from minio import Minio
def test_minio_connection():
"""Тестирование подключения к MinIO"""
print("🔍 Тестирование подключения к MinIO...")
# Параметры подключения
endpoint = os.getenv("MINIO_ENDPOINT", "localhost:9000")
access_key = os.getenv("MINIO_ACCESS_KEY", "minioadmin")
secret_key = os.getenv("MINIO_SECRET_KEY", "minioadmin")
bucket_name = os.getenv("MINIO_BUCKET", "svodka-data")
print(f"📍 Endpoint: {endpoint}")
print(f"🔑 Access Key: {access_key}")
print(f"🔐 Secret Key: {secret_key}")
print(f"🪣 Bucket: {bucket_name}")
try:
# Создаем клиент
print("\n🚀 Создаю MinIO клиент...")
client = Minio(
endpoint,
access_key=access_key,
secret_key=secret_key,
secure=False,
cert_check=False
)
# Проверяем подключение
print("✅ MinIO клиент создан")
# Проверяем bucket
print(f"\n🔍 Проверяю bucket '{bucket_name}'...")
if client.bucket_exists(bucket_name):
print(f"✅ Bucket '{bucket_name}' существует")
else:
print(f"⚠️ Bucket '{bucket_name}' не существует, создаю...")
client.make_bucket(bucket_name)
print(f"✅ Bucket '{bucket_name}' создан")
# Пробуем загрузить тестовый файл
print("\n📤 Тестирую загрузку файла...")
test_data = b"Hello MinIO!"
test_stream = io.BytesIO(test_data)
client.put_object(
bucket_name,
"test.txt",
test_stream,
length=len(test_data),
content_type='text/plain'
)
print("✅ Тестовый файл загружен")
# Пробуем скачать файл
print("\n📥 Тестирую скачивание файла...")
response = client.get_object(bucket_name, "test.txt")
downloaded_data = response.read()
print(f"✅ Файл скачан: {downloaded_data}")
# Удаляем тестовый файл
client.remove_object(bucket_name, "test.txt")
print("✅ Тестовый файл удален")
print("\n🎉 Все тесты MinIO прошли успешно!")
return True
except Exception as e:
print(f"\n❌ Ошибка подключения к MinIO: {e}")
print(f"Тип ошибки: {type(e).__name__}")
return False
def test_environment():
"""Проверка переменных окружения"""
print("🔧 Проверка переменных окружения:")
env_vars = [
"MINIO_ENDPOINT",
"MINIO_ACCESS_KEY",
"MINIO_SECRET_KEY",
"MINIO_BUCKET"
]
for var in env_vars:
value = os.getenv(var, "НЕ УСТАНОВЛЕНО")
print(f" {var}: {value}")
if __name__ == "__main__":
print("=" * 60)
print("🧪 ТЕСТ ПОДКЛЮЧЕНИЯ К MINIO")
print("=" * 60)
test_environment()
print()
success = test_minio_connection()
if success:
print("\n✅ MinIO работает корректно!")
sys.exit(0)
else:
print("\n❌ Проблемы с MinIO!")
sys.exit(1)

69
test_upload.py Normal file
View File

@@ -0,0 +1,69 @@
#!/usr/bin/env python3
"""
Тестирование загрузки Excel файла
"""
import requests
import os
def test_file_upload():
"""Тестирование загрузки файла"""
base_url = "http://localhost:8000"
filename = "test_file.xlsx"
print("🧪 ТЕСТ ЗАГРУЗКИ ФАЙЛА")
print("=" * 40)
# Проверяем, что файл существует
if not os.path.exists(filename):
print(f"❌ Файл {filename} не найден")
return False
print(f"📁 Файл найден: {filename}")
print(f"📏 Размер: {os.path.getsize(filename)} байт")
# Тестируем загрузку в разные парсеры
parsers = [
("svodka_ca", "/svodka_ca/upload", "file"),
("monitoring_fuel", "/monitoring_fuel/upload-zip", "zip_file"),
("svodka_pm", "/svodka_pm/upload-zip", "zip_file")
]
for parser_name, endpoint, file_param in parsers:
print(f"\n🔍 Тестирую {parser_name}...")
try:
# Читаем файл
with open(filename, 'rb') as f:
file_data = f.read()
# Определяем content type
if filename.endswith('.xlsx'):
content_type = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
else:
content_type = "application/octet-stream"
# Загружаем файл с правильным параметром
files = {file_param: (filename, file_data, content_type)}
response = requests.post(f"{base_url}{endpoint}", files=files)
print(f"📤 Результат: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Успешно: {result}")
else:
try:
error_detail = response.json()
print(f"❌ Ошибка: {error_detail}")
except:
print(f"❌ Ошибка: {response.text}")
except Exception as e:
print(f"❌ Исключение: {e}")
print("\n🎯 Тестирование завершено!")
return True
if __name__ == "__main__":
test_file_upload()