3 Commits

Author SHA1 Message Date
4cbdaf1b60 ch 2025-09-01 13:58:42 +03:00
9459196804 all in docker 2025-09-01 12:24:37 +03:00
ce228d9756 work 2025-09-01 12:08:16 +03:00
37 changed files with 1139 additions and 887 deletions

222
.gitignore vendored
View File

@@ -1,24 +1,15 @@
# Python data
__pycache__ .streamlit
# Byte-compiled / optimized / DLL files
__pycache__/ __pycache__/
python_parser/__pycache__/
python_parser/core/__pycache__/
python_parser/adapters/__pycache__/
python_parser/tests/__pycache__/
python_parser/tests/test_core/__pycache__/
python_parser/tests/test_adapters/__pycache__/
python_parser/tests/test_app/__pycache__/
python_parser/app/__pycache__/
python_parser/app/schemas/__pycache__/
python_parser/app/schemas/test_schemas/__pycache__/
python_parser/app/schemas/test_schemas/test_core/__pycache__/
python_parser/app/schemas/test_schemas/test_adapters/__pycache__/
python_parser/app/schemas/test_schemas/test_app/__pycache__/
*.py[cod] *.py[cod]
*$py.class *$py.class
# C extensions
*.so *.so
# Distribution / packaging
.Python .Python
build/ build/
develop-eggs/ develop-eggs/
@@ -32,13 +23,88 @@ parts/
sdist/ sdist/
var/ var/
wheels/ wheels/
pip-wheel-metadata/
share/python-wheels/ share/python-wheels/
*.egg-info/ *.egg-info/
.installed.cfg .installed.cfg
*.egg *.egg
MANIFEST MANIFEST
# Virtual environments # PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env .env
.venv .venv
env/ env/
@@ -47,86 +113,6 @@ ENV/
env.bak/ env.bak/
venv.bak/ venv.bak/
# IDE
.vscode/
.idea/
*.swp
*.swo
*~
# OS
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db
Desktop.ini
# Logs
*.log
logs/
log/
# MinIO data and cache
minio_data/
.minio.sys/
*.meta
part.*
# Docker
.dockerignore
docker-compose.override.yml
# Environment variables
.env
.env.local
.env.development.local
.env.test.local
.env.production.local
# Temporary files
*.tmp
*.temp
*.bak
*.backup
*.orig
# Data files (Excel, CSV, etc.)
*.xlsx
*.xls
*.xlsm
*.csv
*.json
data/
uploads/
# Cache directories
.cache/
.pytest_cache/
.coverage
htmlcov/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# pipenv
Pipfile.lock
# poetry
poetry.lock
# Celery
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Spyder project settings # Spyder project settings
.spyderproject .spyderproject
.spyproject .spyproject
@@ -145,29 +131,23 @@ dmypy.json
# Pyre type checker # Pyre type checker
.pyre/ .pyre/
# pytype static type analyzer # IDE
.pytype/ .vscode/
.idea/
*.swp
*.swo
*~
# Cython debug symbols # OS
cython_debug/ .DS_Store
Thumbs.db
# Local development # Project specific
local_settings.py data/
db.sqlite3 *.zip
db.sqlite3-journal *.xlsx
*.xls
*.xlsm
# FastAPI # MinIO data directory
.pytest_cache/ minio_data/
.coverage
htmlcov/
# Streamlit
.streamlit/secrets.toml
# Node.js (if any frontend components)
node_modules/
npm-debug.log*
yarn-debug.log*
yarn-error.log*
__pycache__/

1
Procfile Normal file
View File

@@ -0,0 +1 @@
web: python /app/run_stand.py

View File

@@ -1,41 +0,0 @@
# 🚀 Быстрый запуск проекта
## 1. Запуск всех сервисов
```bash
docker compose up -d
```
## 2. Проверка статуса
```bash
docker compose ps
```
## 3. Доступ к сервисам
- **FastAPI**: http://localhost:8000
- **Streamlit**: http://localhost:8501
- **MinIO Console**: http://localhost:9001
- **MinIO API**: http://localhost:9000
## 4. Остановка
```bash
docker compose down
```
## 5. Просмотр логов
```bash
# Все сервисы
docker compose logs
# Конкретный сервис
docker compose logs fastapi
docker compose logs streamlit
docker compose logs minio
```
## 6. Пересборка и перезапуск
```bash
docker compose up -d --build
```
---
**Примечание**: При первом запуске Docker будет скачивать образы и собирать контейнеры, это может занять несколько минут.

227
README.md
View File

@@ -1,117 +1,182 @@
# Python Parser CF - Система анализа данных # 🚀 NIN Excel Parsers API - Полная система
Проект состоит из трех основных компонентов: Полноценная система для парсинга Excel отчетов нефтеперерабатывающих заводов (НПЗ) с использованием FastAPI, MinIO и Streamlit.
- **python_parser** - FastAPI приложение для парсинга и обработки данных
- **streamlit_app** - Streamlit приложение для визуализации и анализа ## 🏗️ Архитектура проекта
- **minio_data** - хранилище данных MinIO
Проект состоит из **двух изолированных пакетов**:
- **`python_parser/`** - FastAPI сервер + парсеры Excel
- **`streamlit_app/`** - Веб-интерфейс для демонстрации API
## 🚀 Быстрый запуск ## 🚀 Быстрый запуск
### Предварительные требования ### **Вариант 1: Все сервисы в Docker (рекомендуется)**
- Docker и Docker Compose
- Git
### Запуск всех сервисов (продакшн)
```bash ```bash
docker compose up -d # Запуск всех сервисов: MinIO + FastAPI + Streamlit
docker-compose up -d
# Доступ:
# - MinIO Console: http://localhost:9001
# - FastAPI: http://localhost:8000
# - Streamlit: http://localhost:8501
# - API Docs: http://localhost:8000/docs
``` ```
### Запуск в режиме разработки ### **Вариант 2: Только MinIO в Docker + сервисы локально**
```bash ```bash
# Автоматический запуск # Запуск MinIO в Docker
python start_dev.py docker-compose up -d minio
# Или вручную # Запуск FastAPI локально
docker compose -f docker-compose.dev.yml up -d cd python_parser
python run_dev.py
# В отдельном терминале - Streamlit
cd streamlit_app
streamlit run app.py
``` ```
**Режим разработки** позволяет: ### **Вариант 3: Только MinIO в Docker**
- Автоматически перезагружать Streamlit при изменении кода
- Монтировать исходный код напрямую в контейнер
- Видеть изменения без пересборки контейнеров
### Доступ к сервисам
- **FastAPI**: http://localhost:8000
- **Streamlit**: http://localhost:8501
- **MinIO Console**: http://localhost:9001
- **MinIO API**: http://localhost:9000
### Остановка сервисов
```bash ```bash
docker-compose down # Запуск только MinIO
docker-compose up -d minio
``` ```
## 📋 Описание сервисов
- **MinIO** (порт 9000-9001): S3-совместимое хранилище для данных
- **FastAPI** (порт 8000): API сервер для парсинга Excel файлов
- **Streamlit** (порт 8501): Веб-интерфейс для демонстрации API
## 📁 Структура проекта ## 📁 Структура проекта
``` ```
python_parser_cf/ python_parser_cf/ # Корень проекта
├── python_parser/ # FastAPI приложение ├── python_parser/ # Пакет FastAPI + парсеры
│ ├── app/ # Основной код приложения │ ├── app/ # FastAPI приложение
│ ├── adapters/ # Адаптеры для парсеров │ ├── main.py # Основной файл приложения
├── core/ # Основная бизнес-логика │ └── schemas/ # Pydantic схемы
│ ├── data/ # Тестовые данные │ ├── core/ # Бизнес-логика
└── Dockerfile # Docker образ для FastAPI │ ├── models.py # Модели данных
├── streamlit_app/ # Streamlit приложение │ │ ├── ports.py # Интерфейсы (порты)
├── streamlit_app.py # Основной файл приложения │ └── services.py # Сервисы
│ ├── requirements.txt # Зависимости Python │ ├── adapters/ # Адаптеры для внешних систем
│ ├── .streamlit/ # Конфигурация Streamlit │ ├── storage.py # MinIO адаптер
│ └── Dockerfile # Docker образ для Streamlit │ └── parsers/ # Парсеры Excel файлов
├── minio_data/ # Данные для MinIO ├── data/ # Тестовые данные
├── docker-compose.yml # Конфигурация всех сервисов ├── Dockerfile # Docker образ для FastAPI
└── README.md # Документация │ ├── requirements.txt # Зависимости FastAPI
│ └── run_dev.py # Запуск FastAPI локально
├── streamlit_app/ # Пакет Streamlit
│ ├── app.py # Основное Streamlit приложение
│ ├── requirements.txt # Зависимости Streamlit
│ ├── Dockerfile # Docker образ для Streamlit
│ ├── .streamlit/ # Конфигурация Streamlit
│ │ └── config.toml # Настройки
│ └── README.md # Документация Streamlit
├── docker-compose.yml # Docker Compose конфигурация
├── .gitignore # Git исключения
└── README.md # Общая документация
``` ```
## 🔧 Конфигурация ## 🔍 Доступные эндпоинты
### Переменные окружения - **GET /** - Информация об API
Все сервисы используют следующие переменные окружения: - **GET /docs** - Swagger документация
- `MINIO_ENDPOINT` - адрес MinIO сервера - **GET /parsers** - Список доступных парсеров
- `MINIO_ACCESS_KEY` - ключ доступа к MinIO - **GET /parsers/{parser_name}/getters** - Информация о геттерах парсера
- `MINIO_SECRET_KEY` - секретный ключ MinIO - **POST /svodka_pm/upload-zip** - Загрузка сводок ПМ
- `MINIO_SECURE` - использование SSL/TLS - **POST /svodka_ca/upload** - Загрузка сводок ЦА
- `MINIO_BUCKET` - имя bucket'а для данных - **POST /monitoring_fuel/upload-zip** - Загрузка мониторинга топлива
- **POST /svodka_pm/get_data** - Получение данных сводок ПМ
- **POST /svodka_ca/get_data** - Получение данных сводок ЦА
- **POST /monitoring_fuel/get_data** - Получение данных мониторинга топлива
### Порты ## 📊 Поддерживаемые типы отчетов
- **8000** - FastAPI
- **8501** - Streamlit
- **9000** - MinIO API
- **9001** - MinIO Console
## 📊 Использование 1. **svodka_pm** - Сводки по переработке нефти (ПМ)
- Геттеры: `single_og`, `total_ogs`
2. **svodka_ca** - Сводки по переработке нефти (ЦА)
- Геттеры: `get_data`
3. **monitoring_fuel** - Мониторинг топлива
- Геттеры: `total_by_columns`, `month_by_code`
1. **Запустите все сервисы**: `docker-compose up -d` ## 🏗️ Архитектура
2. **Откройте Streamlit**: http://localhost:8501
3. **Выберите тип данных** для анализа
4. **Просматривайте результаты** в интерактивном интерфейсе
## 🛠️ Разработка Проект использует **Hexagonal Architecture (Ports and Adapters)**:
### Режим разработки (рекомендуется) - **Порты (Ports)**: Интерфейсы для бизнес-логики
- **Адаптеры (Adapters)**: Реализации для внешних систем
- **Сервисы (Services)**: Бизнес-логика приложения
### Система геттеров парсеров
Каждый парсер может иметь несколько методов получения данных (геттеров):
- Регистрация геттеров в словаре с метаданными
- Валидация параметров для каждого геттера
- Единый интерфейс `get_value(getter_name, params)`
## 🐳 Docker
### Сборка образов:
```bash ```bash
# Запуск режима разработки # FastAPI
python start_dev.py docker build -t nin-fastapi ./python_parser
# Остановка # Streamlit
docker compose -f docker-compose.dev.yml down docker build -t nin-streamlit ./streamlit_app
# Возврат к продакшн режиму
python start_prod.py
``` ```
### Локальная разработка FastAPI ### Запуск отдельных сервисов:
```bash ```bash
# Только MinIO
docker-compose up -d minio
# MinIO + FastAPI
docker-compose up -d minio fastapi
# Все сервисы
docker-compose up -d
```
## 🛑 Остановка
### Остановка Docker сервисов:
```bash
# Все сервисы
docker-compose down
# Только MinIO
docker-compose stop minio
```
### Остановка локальных сервисов:
```bash
# Нажмите Ctrl+C в терминале с FastAPI/Streamlit
```
## 🔧 Разработка
### Добавление нового парсера:
1. Создайте файл в `python_parser/adapters/parsers/`
2. Реализуйте интерфейс `ParserPort`
3. Добавьте в `python_parser/core/services.py`
4. Создайте схемы в `python_parser/app/schemas/`
5. Добавьте эндпоинты в `python_parser/app/main.py`
### Тестирование:
```bash
# Запуск тестов
cd python_parser cd python_parser
pip install -r requirements.txt pytest
uvicorn app.main:app --reload
```
### Локальная разработка Streamlit # Запуск с покрытием
```bash pytest --cov=.
cd streamlit_app
pip install -r requirements.txt
streamlit run streamlit_app.py
``` ```
## 📝 Лицензия ## 📝 Лицензия
Проект разработан для внутреннего использования. Проект разработан для внутреннего использования НИН.

View File

@@ -170,16 +170,11 @@ def main():
if not port_8000_ok: if not port_8000_ok:
print("\n🔧 РЕШЕНИЕ: Запустите FastAPI сервер") print("\n🔧 РЕШЕНИЕ: Запустите FastAPI сервер")
print("python run_dev.py") print("docker-compose up -d fastapi")
if not port_8501_ok: if not port_8501_ok:
print("\n🔧 РЕШЕНИЕ: Запустите Streamlit") print("\n🔧 РЕШЕНИЕ: Запустите Streamlit")
print("python run_streamlit.py") print("docker-compose up -d streamlit")
print("\n🚀 Для автоматического запуска используйте:")
print("python start_demo.py")
print("\n🔍 Для пошагового запуска используйте:")
print("python run_manual.py")
if __name__ == "__main__": if __name__ == "__main__":
main() main()

34
create_test_excel.py Normal file
View File

@@ -0,0 +1,34 @@
#!/usr/bin/env python3
"""
Создание тестового Excel файла для тестирования API
"""
import pandas as pd
import numpy as np
def create_test_excel():
"""Создание тестового Excel файла"""
# Создаем тестовые данные
data = {
'name': ['Установка 1', 'Установка 2', 'Установка 3'],
'normativ': [100, 200, 300],
'total': [95, 195, 295],
'total_1': [90, 190, 290]
}
df = pd.DataFrame(data)
# Сохраняем в Excel
filename = 'test_file.xlsx'
with pd.ExcelWriter(filename, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='Мониторинг потребления', index=False)
print(f"✅ Тестовый файл создан: {filename}")
print(f"📊 Содержимое: {len(df)} строк, {len(df.columns)} столбцов")
print(f"📋 Столбцы: {list(df.columns)}")
return filename
if __name__ == "__main__":
create_test_excel()

View File

@@ -1,58 +0,0 @@
services:
minio:
image: minio/minio:latest
container_name: svodka_minio_dev
ports:
- "9000:9000" # API порт
- "9001:9001" # Консоль порт
environment:
MINIO_ROOT_USER: minioadmin
MINIO_ROOT_PASSWORD: minioadmin
command: server /data --console-address ":9001"
volumes:
- ./minio_data:/data
restart: unless-stopped
fastapi:
build: ./python_parser
container_name: svodka_fastapi_dev
ports:
- "8000:8000"
environment:
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
depends_on:
- minio
restart: unless-stopped
streamlit:
image: python:3.11-slim
container_name: svodka_streamlit_dev
ports:
- "8501:8501"
environment:
- API_BASE_URL=http://fastapi:8000
- API_PUBLIC_URL=http://localhost:8000
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
volumes:
# Монтируем исходный код для автоматической перезагрузки
- ./streamlit_app:/app
# Монтируем requirements.txt для установки зависимостей
- ./streamlit_app/requirements.txt:/app/requirements.txt
working_dir: /app
depends_on:
- minio
- fastapi
restart: unless-stopped
command: >
bash -c "
pip install --no-cache-dir -r requirements.txt &&
streamlit run streamlit_app.py --server.port=8501 --server.address=0.0.0.0 --server.runOnSave=true
"

View File

@@ -1,5 +1,3 @@
# Продакшн конфигурация
# Для разработки используйте: docker compose -f docker-compose.dev.yml up -d
services: services:
minio: minio:
image: minio/minio:latest image: minio/minio:latest
@@ -37,13 +35,7 @@ services:
- "8501:8501" - "8501:8501"
environment: environment:
- API_BASE_URL=http://fastapi:8000 - API_BASE_URL=http://fastapi:8000
- API_PUBLIC_URL=http://localhost:8000 - DOCKER_ENV=true
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
depends_on: depends_on:
- minio
- fastapi - fastapi
restart: unless-stopped restart: unless-stopped

17
manifest.yml Normal file
View File

@@ -0,0 +1,17 @@
applications:
- name: nin-python-parser-dev-test
buildpack: python_buildpack
health-check-type: web
services:
- logging-shared-dev
command: python /app/run_stand.py
path: .
disk_quota: 2G
memory: 4G
instances: 1
env:
MINIO_ENDPOINT: s3-region1.ppc-jv-dev.sibintek.ru
MINIO_ACCESS_KEY: 00a70fac02c1208446de
MINIO_SECRET_KEY: 1gk9tVYEEoH9ADRxb4kiAuCo6CCISdV6ie0p6oDO
MINIO_BUCKET: bucket-476684e7-1223-45ac-a101-8b5aeda487d6
MINIO_SECURE: false

20
python_parser/Dockerfile_ Normal file
View File

@@ -0,0 +1,20 @@
FROM repo-dev.predix.rosneft.ru/python:3.11-slim
WORKDIR /app
# RUN pip install kafka-python==2.0.2
# RUN pip freeze > /app/requirements.txt
# ADD . /app
COPY requirements.txt .
RUN mkdir -p vendor
RUN pip download -r /app/requirements.txt --no-binary=:none: -d /app/vendor
# ADD . /app
# ENV KAFKA_BROKER=10.234.160.10:9093,10.234.160.10:9094,10.234.160.10:9095
# ENV KAFKA_UPDATE_ALGORITHM_RULES_TOPIC=algorithm-rule-update
# ENV KAFKA_CLIENT_USERNAME=cf-service
# CMD ["python", "/app/run_dev.py"]

104
python_parser/README.md Normal file
View File

@@ -0,0 +1,104 @@
# 📊 Python Parser - FastAPI + Парсеры Excel
Пакет FastAPI сервера и парсеров Excel для нефтеперерабатывающих заводов.
## 🚀 Быстрый запуск
### **Локально:**
```bash
# Установка зависимостей
pip install -r requirements.txt
# Запуск FastAPI сервера
python run_dev.py
```
### **В Docker:**
```bash
# Сборка образа
docker build -t nin-fastapi .
# Запуск контейнера
docker run -p 8000:8000 nin-fastapi
```
## 📁 Структура пакета
```
python_parser/
├── app/ # FastAPI приложение
│ ├── main.py # Основной файл приложения
│ └── schemas/ # Pydantic схемы
├── core/ # Бизнес-логика
│ ├── models.py # Модели данных
│ ├── ports.py # Интерфейсы (порты)
│ └── services.py # Сервисы
├── adapters/ # Адаптеры для внешних систем
│ ├── storage.py # MinIO адаптер
│ └── parsers/ # Парсеры Excel файлов
├── data/ # Тестовые данные
├── Dockerfile # Docker образ для FastAPI
├── requirements.txt # Зависимости Python
└── run_dev.py # Запуск FastAPI локально
```
## 🔍 Основные эндпоинты
- **GET /** - Информация об API
- **GET /docs** - Swagger документация
- **GET /parsers** - Список доступных парсеров
- **GET /parsers/{parser_name}/getters** - Информация о геттерах парсера
- **POST /svodka_pm/upload-zip** - Загрузка сводок ПМ
- **POST /svodka_ca/upload** - Загрузка сводок ЦА
- **POST /monitoring_fuel/upload-zip** - Загрузка мониторинга топлива
- **POST /svodka_pm/get_data** - Получение данных сводок ПМ
- **POST /svodka_ca/get_data** - Получение данных сводок ЦА
- **POST /monitoring_fuel/get_data** - Получение данных мониторинга топлива
## 📊 Поддерживаемые парсеры
1. **svodka_pm** - Сводки по переработке нефти (ПМ)
- Геттеры: `single_og`, `total_ogs`
2. **svodka_ca** - Сводки по переработке нефти (ЦА)
- Геттеры: `get_data`
3. **monitoring_fuel** - Мониторинг топлива
- Геттеры: `total_by_columns`, `month_by_code`
## 🏗️ Архитектура
Использует **Hexagonal Architecture (Ports and Adapters)**:
- **Порты (Ports)**: Интерфейсы для бизнес-логики
- **Адаптеры (Adapters)**: Реализации для внешних систем
- **Сервисы (Services)**: Бизнес-логика приложения
### Система геттеров парсеров
Каждый парсер может иметь несколько методов получения данных (геттеров):
- Регистрация геттеров в словаре с метаданными
- Валидация параметров для каждого геттера
- Единый интерфейс `get_value(getter_name, params)`
## 🔧 Разработка
### Добавление нового парсера:
1. Создайте файл в `adapters/parsers/`
2. Реализуйте интерфейс `ParserPort`
3. Добавьте в `core/services.py`
4. Создайте схемы в `app/schemas/`
5. Добавьте эндпоинты в `app/main.py`
### Тестирование:
```bash
# Запуск тестов
pytest
# Запуск с покрытием
pytest --cov=.
```
## 📝 Примечание
Этот пакет является частью большей системы. Для полной документации и запуска всех сервисов см. README.md в корне проекта.

View File

@@ -1,135 +0,0 @@
# Интеграция схем Pydantic с парсерами
## Обзор
Этот документ описывает решение для устранения дублирования логики между схемами Pydantic и парсерами. Теперь схемы Pydantic являются единым источником правды для определения параметров парсеров.
## Проблема
Ранее в парсерах дублировалась информация о параметрах:
```python
# В парсере
self.register_getter(
name="single_og",
method=self._get_single_og,
required_params=["id", "codes", "columns"], # Дублирование
optional_params=["search"], # Дублирование
description="Получение данных по одному ОГ"
)
# В схеме
class SvodkaPMSingleOGRequest(BaseModel):
id: OGID = Field(...) # Обязательное поле
codes: List[int] = Field(...) # Обязательное поле
columns: List[str] = Field(...) # Обязательное поле
search: Optional[str] = Field(None) # Необязательное поле
```
## Решение
### 1. Утилиты для работы со схемами
Создан модуль `core/schema_utils.py` с функциями:
- `get_required_fields_from_schema()` - извлекает обязательные поля
- `get_optional_fields_from_schema()` - извлекает необязательные поля
- `register_getter_from_schema()` - регистрирует геттер с использованием схемы
- `validate_params_with_schema()` - валидирует параметры с помощью схемы
### 2. Обновленные парсеры
Теперь парсеры используют схемы как единый источник правды:
```python
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды
register_getter_from_schema(
parser_instance=self,
getter_name="single_og",
method=self._get_single_og,
schema_class=SvodkaPMSingleOGRequest,
description="Получение данных по одному ОГ"
)
```
### 3. Валидация параметров
Методы геттеров теперь автоматически валидируют параметры:
```python
def _get_single_og(self, params: dict):
"""Получение данных по одному ОГ"""
# Валидируем параметры с помощью схемы Pydantic
validated_params = validate_params_with_schema(params, SvodkaPMSingleOGRequest)
og_id = validated_params["id"]
codes = validated_params["codes"]
columns = validated_params["columns"]
search = validated_params.get("search")
# ... остальная логика
```
## Преимущества
1. **Единый источник правды** - информация о параметрах хранится только в схемах Pydantic
2. **Автоматическая валидация** - параметры автоматически валидируются с помощью Pydantic
3. **Синхронизация** - изменения в схемах автоматически отражаются в парсерах
4. **Типобезопасность** - использование типов Pydantic обеспечивает типобезопасность
5. **Документация** - Swagger документация автоматически генерируется из схем
## Совместимость
Решение работает с:
- Pydantic v1 (через `__fields__`)
- Pydantic v2 (через `model_fields` и `is_required()`)
## Использование
### Для новых парсеров
1. Создайте схему Pydantic с нужными полями
2. Используйте `register_getter_from_schema()` для регистрации геттера
3. Используйте `validate_params_with_schema()` в методах геттеров
### Для существующих парсеров
1. Убедитесь, что у вас есть соответствующая схема Pydantic
2. Замените ручную регистрацию геттеров на `register_getter_from_schema()`
3. Добавьте валидацию параметров в методы геттеров
## Примеры
### Схема с обязательными и необязательными полями
```python
class ExampleRequest(BaseModel):
required_field: str = Field(..., description="Обязательное поле")
optional_field: Optional[str] = Field(None, description="Необязательное поле")
```
### Регистрация геттера
```python
register_getter_from_schema(
parser_instance=self,
getter_name="example_getter",
method=self._example_method,
schema_class=ExampleRequest,
description="Пример геттера"
)
```
### Валидация в методе
```python
def _example_method(self, params: dict):
validated_params = validate_params_with_schema(params, ExampleRequest)
# validated_params содержит валидированные данные
```
## Заключение
Это решение устраняет дублирование кода и обеспечивает единообразие между API схемами и парсерами. Теперь изменения в схемах автоматически отражаются в парсерах, что упрощает поддержку и развитие системы.

View File

@@ -3,8 +3,6 @@ import re
import zipfile import zipfile
from typing import Dict, Tuple from typing import Dict, Tuple
from core.ports import ParserPort from core.ports import ParserPort
from core.schema_utils import register_getter_from_schema, validate_params_with_schema
from app.schemas.monitoring_fuel import MonitoringFuelTotalRequest, MonitoringFuelMonthRequest
from adapters.pconfig import data_to_json from adapters.pconfig import data_to_json
@@ -15,40 +13,37 @@ class MonitoringFuelParser(ParserPort):
def _register_default_getters(self): def _register_default_getters(self):
"""Регистрация геттеров по умолчанию""" """Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды self.register_getter(
register_getter_from_schema( name="total_by_columns",
parser_instance=self,
getter_name="total_by_columns",
method=self._get_total_by_columns, method=self._get_total_by_columns,
schema_class=MonitoringFuelTotalRequest, required_params=["columns"],
optional_params=[],
description="Агрегация данных по колонкам" description="Агрегация данных по колонкам"
) )
register_getter_from_schema( self.register_getter(
parser_instance=self, name="month_by_code",
getter_name="month_by_code",
method=self._get_month_by_code, method=self._get_month_by_code,
schema_class=MonitoringFuelMonthRequest, required_params=["month"],
optional_params=[],
description="Получение данных за конкретный месяц" description="Получение данных за конкретный месяц"
) )
def _get_total_by_columns(self, params: dict): def _get_total_by_columns(self, params: dict):
"""Агрегация данных по колонкам""" """Агрегация по колонкам (обертка для совместимости)"""
# Валидируем параметры с помощью схемы Pydantic columns = params["columns"]
validated_params = validate_params_with_schema(params, MonitoringFuelTotalRequest) if not columns:
raise ValueError("Отсутствуют идентификаторы столбцов")
columns = validated_params["columns"]
# TODO: Переделать под новую архитектуру # TODO: Переделать под новую архитектуру
df_means, _ = self.aggregate_by_columns(self.df, columns) df_means, _ = self.aggregate_by_columns(self.df, columns)
return df_means.to_dict(orient='index') return df_means.to_dict(orient='index')
def _get_month_by_code(self, params: dict): def _get_month_by_code(self, params: dict):
"""Получение данных за конкретный месяц""" """Получение данных за месяц (обертка для совместимости)"""
# Валидируем параметры с помощью схемы Pydantic month = params["month"]
validated_params = validate_params_with_schema(params, MonitoringFuelMonthRequest) if not month:
raise ValueError("Отсутствует идентификатор месяца")
month = validated_params["month"]
# TODO: Переделать под новую архитектуру # TODO: Переделать под новую архитектуру
df_month = self.get_month(self.df, month) df_month = self.get_month(self.df, month)

View File

@@ -2,8 +2,6 @@ import pandas as pd
import numpy as np import numpy as np
from core.ports import ParserPort from core.ports import ParserPort
from core.schema_utils import register_getter_from_schema, validate_params_with_schema
from app.schemas.svodka_ca import SvodkaCARequest
from adapters.pconfig import get_og_by_name from adapters.pconfig import get_og_by_name
@@ -14,22 +12,23 @@ class SvodkaCAParser(ParserPort):
def _register_default_getters(self): def _register_default_getters(self):
"""Регистрация геттеров по умолчанию""" """Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды self.register_getter(
register_getter_from_schema( name="get_data",
parser_instance=self,
getter_name="get_data",
method=self._get_data_wrapper, method=self._get_data_wrapper,
schema_class=SvodkaCARequest, required_params=["modes", "tables"],
optional_params=[],
description="Получение данных по режимам и таблицам" description="Получение данных по режимам и таблицам"
) )
def _get_data_wrapper(self, params: dict): def _get_data_wrapper(self, params: dict):
"""Получение данных по режимам и таблицам""" """Обертка для получения данных (для совместимости)"""
# Валидируем параметры с помощью схемы Pydantic modes = params["modes"]
validated_params = validate_params_with_schema(params, SvodkaCARequest) tables = params["tables"]
modes = validated_params["modes"] if not isinstance(modes, list):
tables = validated_params["tables"] raise ValueError("Поле 'modes' должно быть списком")
if not isinstance(tables, list):
raise ValueError("Поле 'tables' должно быть списком")
# TODO: Переделать под новую архитектуру # TODO: Переделать под новую архитектуру
data_dict = {} data_dict = {}

View File

@@ -1,8 +1,6 @@
import pandas as pd import pandas as pd
from core.ports import ParserPort from core.ports import ParserPort
from core.schema_utils import register_getter_from_schema, validate_params_with_schema
from app.schemas.svodka_pm import SvodkaPMSingleOGRequest, SvodkaPMTotalOGsRequest
from adapters.pconfig import OG_IDS, replace_id_in_path, data_to_json from adapters.pconfig import OG_IDS, replace_id_in_path, data_to_json
@@ -13,45 +11,48 @@ class SvodkaPMParser(ParserPort):
def _register_default_getters(self): def _register_default_getters(self):
"""Регистрация геттеров по умолчанию""" """Регистрация геттеров по умолчанию"""
# Используем схемы Pydantic как единый источник правды self.register_getter(
register_getter_from_schema( name="single_og",
parser_instance=self,
getter_name="single_og",
method=self._get_single_og, method=self._get_single_og,
schema_class=SvodkaPMSingleOGRequest, required_params=["id", "codes", "columns"],
optional_params=["search"],
description="Получение данных по одному ОГ" description="Получение данных по одному ОГ"
) )
register_getter_from_schema( self.register_getter(
parser_instance=self, name="total_ogs",
getter_name="total_ogs",
method=self._get_total_ogs, method=self._get_total_ogs,
schema_class=SvodkaPMTotalOGsRequest, required_params=["codes", "columns"],
optional_params=["search"],
description="Получение данных по всем ОГ" description="Получение данных по всем ОГ"
) )
def _get_single_og(self, params: dict): def _get_single_og(self, params: dict):
"""Получение данных по одному ОГ""" """Получение данных по одному ОГ (обертка для совместимости)"""
# Валидируем параметры с помощью схемы Pydantic og_id = params["id"]
validated_params = validate_params_with_schema(params, SvodkaPMSingleOGRequest) codes = params["codes"]
columns = params["columns"]
search = params.get("search")
og_id = validated_params["id"] if not isinstance(codes, list):
codes = validated_params["codes"] raise ValueError("Поле 'codes' должно быть списком")
columns = validated_params["columns"] if not isinstance(columns, list):
search = validated_params.get("search") raise ValueError("Поле 'columns' должно быть списком")
# Здесь нужно получить DataFrame из self.df, но пока используем старую логику # Здесь нужно получить DataFrame из self.df, но пока используем старую логику
# TODO: Переделать под новую архитектуру # TODO: Переделать под новую архитектуру
return self.get_svodka_og(self.df, og_id, codes, columns, search) return self.get_svodka_og(self.df, og_id, codes, columns, search)
def _get_total_ogs(self, params: dict): def _get_total_ogs(self, params: dict):
"""Получение данных по всем ОГ""" """Получение данных по всем ОГ (обертка для совместимости)"""
# Валидируем параметры с помощью схемы Pydantic codes = params["codes"]
validated_params = validate_params_with_schema(params, SvodkaPMTotalOGsRequest) columns = params["columns"]
search = params.get("search")
codes = validated_params["codes"] if not isinstance(codes, list):
columns = validated_params["columns"] raise ValueError("Поле 'codes' должно быть списком")
search = validated_params.get("search") if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
# TODO: Переделать под новую архитектуру # TODO: Переделать под новую архитектуру
return self.get_svodka_total(self.df, codes, columns, search) return self.get_svodka_total(self.df, codes, columns, search)

View File

@@ -1,140 +0,0 @@
"""
Упрощенные утилиты для работы со схемами Pydantic
"""
from typing import List, Dict, Any, Type
from pydantic import BaseModel
import inspect
def get_required_fields_from_schema(schema_class: Type[BaseModel]) -> List[str]:
"""
Извлекает список обязательных полей из схемы Pydantic
Args:
schema_class: Класс схемы Pydantic
Returns:
Список имен обязательных полей
"""
required_fields = []
# Используем model_fields для Pydantic v2 или __fields__ для v1
if hasattr(schema_class, 'model_fields'):
fields = schema_class.model_fields
else:
fields = schema_class.__fields__
for field_name, field_info in fields.items():
# В Pydantic v2 есть метод is_required()
if hasattr(field_info, 'is_required'):
if field_info.is_required():
required_fields.append(field_name)
elif hasattr(field_info, 'required'):
if field_info.required:
required_fields.append(field_name)
else:
# Fallback для старых версий - проверяем наличие default
has_default = False
if hasattr(field_info, 'default'):
has_default = field_info.default is not ...
elif hasattr(field_info, 'default_factory'):
has_default = field_info.default_factory is not None
if not has_default:
required_fields.append(field_name)
return required_fields
def get_optional_fields_from_schema(schema_class: Type[BaseModel]) -> List[str]:
"""
Извлекает список необязательных полей из схемы Pydantic
Args:
schema_class: Класс схемы Pydantic
Returns:
Список имен необязательных полей
"""
optional_fields = []
# Используем model_fields для Pydantic v2 или __fields__ для v1
if hasattr(schema_class, 'model_fields'):
fields = schema_class.model_fields
else:
fields = schema_class.__fields__
for field_name, field_info in fields.items():
# В Pydantic v2 есть метод is_required()
if hasattr(field_info, 'is_required'):
if not field_info.is_required():
optional_fields.append(field_name)
elif hasattr(field_info, 'required'):
if not field_info.required:
optional_fields.append(field_name)
else:
# Fallback для старых версий - проверяем наличие default
has_default = False
if hasattr(field_info, 'default'):
has_default = field_info.default is not ...
elif hasattr(field_info, 'default_factory'):
has_default = field_info.default_factory is not None
if has_default:
optional_fields.append(field_name)
return optional_fields
def register_getter_from_schema(parser_instance, getter_name: str, method: callable,
schema_class: Type[BaseModel], description: str = ""):
"""
Регистрирует геттер в парсере, используя схему Pydantic для определения параметров
Args:
parser_instance: Экземпляр парсера
getter_name: Имя геттера
method: Метод для выполнения
schema_class: Класс схемы Pydantic
description: Описание геттера (если не указано, берется из docstring метода)
"""
# Извлекаем параметры из схемы
required_params = get_required_fields_from_schema(schema_class)
optional_params = get_optional_fields_from_schema(schema_class)
# Если описание не указано, берем из docstring метода
if not description:
description = inspect.getdoc(method) or ""
# Регистрируем геттер
parser_instance.register_getter(
name=getter_name,
method=method,
required_params=required_params,
optional_params=optional_params,
description=description
)
def validate_params_with_schema(params: Dict[str, Any], schema_class: Type[BaseModel]) -> Dict[str, Any]:
"""
Валидирует параметры с помощью схемы Pydantic
Args:
params: Словарь параметров
schema_class: Класс схемы Pydantic
Returns:
Валидированные параметры
Raises:
ValidationError: Если параметры не прошли валидацию
"""
try:
# Создаем экземпляр схемы для валидации
validated_data = schema_class(**params)
return validated_data.dict()
except Exception as e:
raise ValueError(f"Ошибка валидации параметров: {str(e)}")

View File

@@ -11,4 +11,5 @@ requests>=2.31.0
# pytest-cov>=4.0.0 # pytest-cov>=4.0.0
# pytest-mock>=3.10.0 # pytest-mock>=3.10.0
httpx>=0.24.0 httpx>=0.24.0
numpy numpy
streamlit>=1.28.0

View File

@@ -0,0 +1 @@
python-3.11.*

65
run_streamlit_local.py Normal file
View File

@@ -0,0 +1,65 @@
#!/usr/bin/env python3
"""
Запуск Streamlit интерфейса локально из изолированного пакета
"""
import subprocess
import sys
import webbrowser
import os
def main():
"""Основная функция"""
print("🚀 ЗАПУСК STREAMLIT ИЗ ИЗОЛИРОВАННОГО ПАКЕТА")
print("=" * 60)
print("Убедитесь, что FastAPI сервер запущен на порту 8000")
print("=" * 60)
# Проверяем, существует ли папка streamlit_app
if not os.path.exists("streamlit_app"):
print("❌ Папка streamlit_app не найдена")
print("Создайте изолированный пакет или используйте docker-compose up -d")
return
# Переходим в папку streamlit_app
os.chdir("streamlit_app")
# Проверяем, установлен ли Streamlit
try:
import streamlit
print(f"✅ Streamlit {streamlit.__version__} установлен")
except ImportError:
print("❌ Streamlit не установлен")
print("Установите: pip install -r requirements.txt")
return
print("\n🚀 Запускаю Streamlit...")
print("📍 URL: http://localhost:8501")
print("🔗 API: http://localhost:8000")
print("🛑 Для остановки нажмите Ctrl+C")
# Открываем браузер
try:
webbrowser.open("http://localhost:8501")
print("✅ Браузер открыт")
except Exception as e:
print(f"⚠️ Не удалось открыть браузер: {e}")
# Запускаем Streamlit с правильными переменными окружения
env = os.environ.copy()
env["DOCKER_ENV"] = "false" # Локальный запуск
env["API_BASE_URL"] = "http://localhost:8000" # Локальный API
try:
subprocess.run([
sys.executable, "-m", "streamlit", "run", "app.py",
"--server.port", "8501",
"--server.address", "localhost",
"--server.headless", "false",
"--browser.gatherUsageStats", "false"
], env=env)
except KeyboardInterrupt:
print("\n👋 Streamlit остановлен")
if __name__ == "__main__":
main()

View File

@@ -1,49 +0,0 @@
#!/usr/bin/env python3
"""
Скрипт для запуска проекта в режиме разработки
"""
import subprocess
import sys
import os
def run_command(command, description):
"""Выполнение команды с выводом"""
print(f"🔄 {description}...")
try:
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(f"{description} выполнено успешно")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Ошибка при {description.lower()}:")
print(f" Команда: {command}")
print(f" Ошибка: {e.stderr}")
return False
def main():
print("🚀 Запуск проекта в режиме разработки")
print("=" * 50)
# Останавливаем продакшн контейнеры если они запущены
if run_command("docker compose ps", "Проверка статуса контейнеров"):
if "Up" in subprocess.run("docker compose ps", shell=True, capture_output=True, text=True).stdout:
print("🛑 Останавливаю продакшн контейнеры...")
run_command("docker compose down", "Остановка продакшн контейнеров")
# Запускаем режим разработки
print("\n🔧 Запуск режима разработки...")
if run_command("docker compose -f docker-compose.dev.yml up -d", "Запуск контейнеров разработки"):
print("\n🎉 Проект запущен в режиме разработки!")
print("\n📍 Доступные сервисы:")
print(" • Streamlit: http://localhost:8501")
print(" • FastAPI: http://localhost:8000")
print(" • MinIO Console: http://localhost:9001")
print("\n💡 Теперь изменения в streamlit_app/ будут автоматически перезагружаться!")
print("\n🛑 Для остановки используйте:")
print(" docker compose -f docker-compose.dev.yml down")
else:
print("\nНе удалось запустить проект в режиме разработки")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,49 +0,0 @@
#!/usr/bin/env python3
"""
Скрипт для запуска проекта в продакшн режиме
"""
import subprocess
import sys
def run_command(command, description):
"""Выполнение команды с выводом"""
print(f"🔄 {description}...")
try:
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(f"{description} выполнено успешно")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Ошибка при {description.lower()}:")
print(f" Команда: {command}")
print(f" Ошибка: {e.stderr}")
return False
def main():
print("🚀 Запуск проекта в продакшн режиме")
print("=" * 50)
# Останавливаем контейнеры разработки если они запущены
if run_command("docker compose -f docker-compose.dev.yml ps", "Проверка статуса контейнеров разработки"):
if "Up" in subprocess.run("docker compose -f docker-compose.dev.yml ps", shell=True, capture_output=True, text=True).stdout:
print("🛑 Останавливаю контейнеры разработки...")
run_command("docker compose -f docker-compose.dev.yml down", "Остановка контейнеров разработки")
# Запускаем продакшн режим
print("\n🏭 Запуск продакшн режима...")
if run_command("docker compose up -d --build", "Запуск продакшн контейнеров"):
print("\n🎉 Проект запущен в продакшн режиме!")
print("\n📍 Доступные сервисы:")
print(" • Streamlit: http://localhost:8501")
print(" • FastAPI: http://localhost:8000")
print(" • MinIO Console: http://localhost:9001")
print("\n💡 Для разработки используйте:")
print(" python start_dev.py")
print("\n🛑 Для остановки используйте:")
print(" docker compose down")
else:
print("\nНе удалось запустить проект в продакшн режиме")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,31 @@
__pycache__
*.pyc
*.pyo
*.pyd
.Python
env
pip-log.txt
pip-delete-this-directory.txt
.tox
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.log
.git
.mypy_cache
.pytest_cache
.hypothesis
.DS_Store
.env
.venv
venv/
ENV/
env/
.idea/
.vscode/
*.swp
*.swo
*~

View File

@@ -1,15 +0,0 @@
[server]
port = 8501
address = "0.0.0.0"
enableCORS = false
enableXsrfProtection = false
[browser]
gatherUsageStats = false
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
secondaryBackgroundColor = "#F0F2F6"
textColor = "#262730"
font = "sans serif"

View File

@@ -2,22 +2,22 @@ FROM python:3.11-slim
WORKDIR /app WORKDIR /app
# Установка системных зависимостей # Устанавливаем системные зависимости
RUN apt-get update && apt-get install -y \ RUN apt-get update && apt-get install -y \
gcc \ gcc \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Копирование requirements.txt # Копируем файлы зависимостей
COPY requirements.txt . COPY requirements.txt .
# Установка Python зависимостей # Устанавливаем Python зависимости
RUN pip install --no-cache-dir -r requirements.txt RUN pip install --no-cache-dir -r requirements.txt
# Копирование кода приложения # Копируем код приложения
COPY . . COPY . .
# Открытие порта # Открываем порт
EXPOSE 8501 EXPOSE 8501
# Запуск Streamlit # Команда запуска
CMD ["streamlit", "run", "streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"] CMD ["streamlit", "run", "app.py", "--server.port", "8501", "--server.address", "0.0.0.0"]

44
streamlit_app/README.md Normal file
View File

@@ -0,0 +1,44 @@
# 📊 Streamlit App - NIN Excel Parsers API
Изолированное Streamlit приложение для демонстрации работы NIN Excel Parsers API.
## 🚀 Запуск
### Локально:
```bash
cd streamlit_app
pip install -r requirements.txt
streamlit run app.py
```
### В Docker:
```bash
docker build -t streamlit-app .
docker run -p 8501:8501 streamlit-app
```
## 🔧 Конфигурация
### Переменные окружения:
- `API_BASE_URL` - адрес FastAPI сервера (по умолчанию: `http://fastapi:8000`)
### Параметры Streamlit:
- Порт: 8501
- Адрес: 0.0.0.0 (для Docker)
- Режим: headless (для Docker)
## 📁 Структура
```
streamlit_app/
├── app.py # Основное приложение
├── requirements.txt # Зависимости Python
├── Dockerfile # Docker образ
├── .streamlit/ # Конфигурация Streamlit
│ └── config.toml # Настройки
└── README.md # Документация
```
## 🌐 Доступ
После запуска приложение доступно по адресу: **http://localhost:8501**

View File

@@ -1,100 +0,0 @@
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from minio import Minio
import os
from io import BytesIO
# Конфигурация страницы
st.set_page_config(
page_title="Сводка данных",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Заголовок приложения
st.title("📊 Анализ данных сводки")
st.markdown("---")
# Инициализация MinIO клиента
@st.cache_resource
def init_minio_client():
try:
client = Minio(
os.getenv("MINIO_ENDPOINT", "localhost:9000"),
access_key=os.getenv("MINIO_ACCESS_KEY", "minioadmin"),
secret_key=os.getenv("MINIO_SECRET_KEY", "minioadmin"),
secure=os.getenv("MINIO_SECURE", "false").lower() == "true"
)
return client
except Exception as e:
st.error(f"Ошибка подключения к MinIO: {e}")
return None
# Боковая панель
with st.sidebar:
st.header("⚙️ Настройки")
# Выбор типа данных
data_type = st.selectbox(
"Тип данных",
["Мониторинг топлива", "Сводка ПМ", "Сводка ЦА"]
)
# Выбор периода
period = st.date_input(
"Период",
value=pd.Timestamp.now().date()
)
st.markdown("---")
st.markdown("### 📈 Статистика")
st.info("Выберите тип данных для анализа")
# Основной контент
col1, col2 = st.columns([2, 1])
with col1:
st.subheader(f"📋 {data_type}")
if data_type == "Мониторинг топлива":
st.info("Анализ данных мониторинга топлива")
# Здесь будет логика для работы с данными мониторинга топлива
elif data_type == "Сводка ПМ":
st.info("Анализ данных сводки ПМ")
# Здесь будет логика для работы с данными сводки ПМ
elif data_type == "Сводка ЦА":
st.info("Анализ данных сводки ЦА")
# Здесь будет логика для работы с данными сводки ЦА
with col2:
st.subheader("📊 Быстрая статистика")
st.metric("Всего записей", "0")
st.metric("Активных", "0")
st.metric("Ошибок", "0")
# Нижняя панель
st.markdown("---")
st.subheader("🔍 Детальный анализ")
# Заглушка для графиков
placeholder = st.empty()
with placeholder.container():
col1, col2 = st.columns(2)
with col1:
st.write("📈 График 1")
# Здесь будет график
with col2:
st.write("📊 График 2")
# Здесь будет график
# Футер
st.markdown("---")
st.markdown("**Разработано для анализа данных сводки** | v1.0.0")

View File

@@ -15,9 +15,17 @@ st.set_page_config(
initial_sidebar_state="expanded" initial_sidebar_state="expanded"
) )
# Конфигурация API # Конфигурация API - автоматически определяем правильный адрес
API_BASE_URL = os.getenv("API_BASE_URL", "http://fastapi:8000") # Внутренний адрес для Docker def get_api_base_url():
API_PUBLIC_URL = os.getenv("API_PUBLIC_URL", "http://localhost:8000") # Внешний адрес для пользователя """Автоматически определяет правильный адрес API"""
# Если запущено в Docker, используем внутренний адрес
if os.getenv("DOCKER_ENV") == "true":
return "http://fastapi:8000"
# Если запущено локально, используем localhost
return "http://localhost:8000"
API_BASE_URL = os.getenv("API_BASE_URL", get_api_base_url())
def check_api_health(): def check_api_health():
"""Проверка доступности API""" """Проверка доступности API"""
@@ -37,6 +45,16 @@ def get_available_parsers():
except: except:
return [] return []
def get_parser_getters(parser_name: str):
"""Получение информации о геттерах парсера"""
try:
response = requests.get(f"{API_BASE_URL}/parsers/{parser_name}/getters")
if response.status_code == 200:
return response.json()
return {}
except:
return {}
def get_server_info(): def get_server_info():
"""Получение информации о сервере""" """Получение информации о сервере"""
try: try:
@@ -74,7 +92,7 @@ def main():
st.info("Убедитесь, что FastAPI сервер запущен") st.info("Убедитесь, что FastAPI сервер запущен")
return return
st.success(f"✅ API доступен по адресу {API_PUBLIC_URL}") st.success(f"✅ API доступен по адресу {API_BASE_URL}")
# Боковая панель с информацией # Боковая панель с информацией
with st.sidebar: with st.sidebar:
@@ -106,6 +124,9 @@ def main():
with tab1: with tab1:
st.header("📊 Сводки ПМ - Полный функционал") st.header("📊 Сводки ПМ - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("svodka_pm")
# Секция загрузки файлов # Секция загрузки файлов
st.subheader("📤 Загрузка файлов") st.subheader("📤 Загрузка файлов")
uploaded_pm = st.file_uploader( uploaded_pm = st.file_uploader(
@@ -134,6 +155,15 @@ def main():
# Секция получения данных # Секция получения данных
st.subheader("🔍 Получение данных") st.subheader("🔍 Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2) col1, col2 = st.columns(2)
with col1: with col1:
@@ -165,12 +195,13 @@ def main():
if codes and columns: if codes and columns:
with st.spinner("Получаю данные..."): with st.spinner("Получаю данные..."):
data = { data = {
"getter": "single_og",
"id": og_id, "id": og_id,
"codes": codes, "codes": codes,
"columns": columns "columns": columns
} }
result, status = make_api_request("/svodka_pm/get_single_og", data) result, status = make_api_request("/svodka_pm/get_data", data)
if status == 200: if status == 200:
st.success("✅ Данные получены") st.success("✅ Данные получены")
@@ -201,11 +232,12 @@ def main():
if codes_total and columns_total: if codes_total and columns_total:
with st.spinner("Получаю данные..."): with st.spinner("Получаю данные..."):
data = { data = {
"getter": "total_ogs",
"codes": codes_total, "codes": codes_total,
"columns": columns_total "columns": columns_total
} }
result, status = make_api_request("/svodka_pm/get_total_ogs", data) result, status = make_api_request("/svodka_pm/get_data", data)
if status == 200: if status == 200:
st.success("✅ Данные получены") st.success("✅ Данные получены")
@@ -219,6 +251,9 @@ def main():
with tab2: with tab2:
st.header("🏭 Сводки СА - Полный функционал") st.header("🏭 Сводки СА - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("svodka_ca")
# Секция загрузки файлов # Секция загрузки файлов
st.subheader("📤 Загрузка файлов") st.subheader("📤 Загрузка файлов")
uploaded_ca = st.file_uploader( uploaded_ca = st.file_uploader(
@@ -246,7 +281,16 @@ def main():
st.markdown("---") st.markdown("---")
# Секция получения данных # Секция получения данных
st.subheader("🔍 Получение данных") st.subheader("<EFBFBD><EFBFBD> Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2) col1, col2 = st.columns(2)
@@ -273,6 +317,7 @@ def main():
if modes and tables: if modes and tables:
with st.spinner("Получаю данные..."): with st.spinner("Получаю данные..."):
data = { data = {
"getter": "get_data",
"modes": modes, "modes": modes,
"tables": tables "tables": tables
} }
@@ -283,7 +328,7 @@ def main():
st.success("✅ Данные получены") st.success("✅ Данные получены")
st.json(result) st.json(result)
else: else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}") st.error(f"❌ Ошибка: {result.get('message', f'Неизвестная ошибка: {status}')}")
else: else:
st.warning("⚠️ Выберите режимы и таблицы") st.warning("⚠️ Выберите режимы и таблицы")
@@ -291,6 +336,9 @@ def main():
with tab3: with tab3:
st.header("⛽ Мониторинг топлива - Полный функционал") st.header("⛽ Мониторинг топлива - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("monitoring_fuel")
# Секция загрузки файлов # Секция загрузки файлов
st.subheader("📤 Загрузка файлов") st.subheader("📤 Загрузка файлов")
uploaded_fuel = st.file_uploader( uploaded_fuel = st.file_uploader(
@@ -319,6 +367,15 @@ def main():
# Секция получения данных # Секция получения данных
st.subheader("🔍 Получение данных") st.subheader("🔍 Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2) col1, col2 = st.columns(2)
with col1: with col1:
@@ -335,10 +392,11 @@ def main():
if columns_fuel: if columns_fuel:
with st.spinner("Получаю данные..."): with st.spinner("Получаю данные..."):
data = { data = {
"getter": "total_by_columns",
"columns": columns_fuel "columns": columns_fuel
} }
result, status = make_api_request("/monitoring_fuel/get_total_by_columns", data) result, status = make_api_request("/monitoring_fuel/get_data", data)
if status == 200: if status == 200:
st.success("✅ Данные получены") st.success("✅ Данные получены")
@@ -360,10 +418,11 @@ def main():
if st.button("🔍 Получить данные за месяц", key="fuel_month_btn"): if st.button("🔍 Получить данные за месяц", key="fuel_month_btn"):
with st.spinner("Получаю данные..."): with st.spinner("Получаю данные..."):
data = { data = {
"getter": "month_by_code",
"month": month "month": month
} }
result, status = make_api_request("/monitoring_fuel/get_month_by_code", data) result, status = make_api_request("/monitoring_fuel/get_data", data)
if status == 200: if status == 200:
st.success("✅ Данные получены") st.success("✅ Данные получены")
@@ -374,7 +433,7 @@ def main():
# Футер # Футер
st.markdown("---") st.markdown("---")
st.markdown("### 📚 Документация API") st.markdown("### 📚 Документация API")
st.markdown(f"Полная документация доступна по адресу: {API_PUBLIC_URL}/docs") st.markdown(f"Полная документация доступна по адресу: {API_BASE_URL}/docs")
# Информация о проекте # Информация о проекте
with st.expander(" О проекте"): with st.expander(" О проекте"):

View File

@@ -1,7 +1,4 @@
streamlit>=1.28.0 streamlit>=1.28.0
pandas>=2.0.0 requests>=2.31.0
numpy>=1.24.0 pandas>=1.5.0
plotly>=5.15.0 numpy>=1.24.0
minio>=7.1.0
openpyxl>=3.1.0
xlrd>=2.0.1

84
test_api.py Normal file
View File

@@ -0,0 +1,84 @@
#!/usr/bin/env python3
"""
Тестовый скрипт для проверки API
"""
import requests
import json
def test_api_endpoints():
"""Тестирование API эндпоинтов"""
base_url = "http://localhost:8000"
print("🧪 ТЕСТИРОВАНИЕ API")
print("=" * 50)
# Тест 1: Проверка доступности API
print("\n1⃣ Проверка доступности API...")
try:
response = requests.get(f"{base_url}/")
if response.status_code == 200:
print(f"✅ API доступен: {response.json()}")
else:
print(f"❌ API недоступен: {response.status_code}")
return False
except Exception as e:
print(f"❌ Ошибка подключения к API: {e}")
return False
# Тест 2: Список парсеров
print("\n2⃣ Получение списка парсеров...")
try:
response = requests.get(f"{base_url}/parsers")
if response.status_code == 200:
parsers = response.json()
print(f"✅ Парсеры: {parsers}")
else:
print(f"❌ Ошибка получения парсеров: {response.status_code}")
except Exception as e:
print(f"❌ Ошибка: {e}")
# Тест 3: Информация о геттерах
print("\n3⃣ Информация о геттерах парсеров...")
parsers_to_test = ["svodka_pm", "svodka_ca", "monitoring_fuel"]
for parser in parsers_to_test:
try:
response = requests.get(f"{base_url}/parsers/{parser}/getters")
if response.status_code == 200:
getters = response.json()
print(f"{parser}: {len(getters.get('getters', {}))} геттеров")
else:
print(f"{parser}: ошибка {response.status_code}")
except Exception as e:
print(f"{parser}: ошибка {e}")
# Тест 4: Загрузка тестового файла
print("\n4⃣ Тест загрузки файла...")
try:
# Создаем простой Excel файл для теста
test_data = b"test content"
files = {"file": ("test.xlsx", test_data, "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")}
response = requests.post(f"{base_url}/svodka_ca/upload", files=files)
print(f"📤 Результат загрузки: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Файл загружен: {result}")
else:
print(f"❌ Ошибка загрузки: {response.status_code}")
try:
error_detail = response.json()
print(f"📋 Детали ошибки: {error_detail}")
except:
print(f"📋 Текст ошибки: {response.text}")
except Exception as e:
print(f"❌ Ошибка теста загрузки: {e}")
print("\n🎯 Тестирование завершено!")
return True
if __name__ == "__main__":
test_api_endpoints()

79
test_api_direct.py Normal file
View File

@@ -0,0 +1,79 @@
#!/usr/bin/env python3
"""
Прямое тестирование API эндпоинтов
"""
import requests
import json
def test_api_endpoints():
"""Тестирование API эндпоинтов"""
base_url = "http://localhost:8000"
print("🧪 ПРЯМОЕ ТЕСТИРОВАНИЕ API")
print("=" * 40)
# Тест 1: Проверка доступности API
print("\n1⃣ Проверка доступности API...")
try:
response = requests.get(f"{base_url}/")
print(f"✅ API доступен: {response.status_code}")
except Exception as e:
print(f"❌ Ошибка: {e}")
return
# Тест 2: Тестирование эндпоинта svodka_ca/get_data
print("\n2⃣ Тестирование svodka_ca/get_data...")
try:
data = {
"getter": "get_data",
"modes": ["plan", "fact"],
"tables": ["ТиП", "Топливо"]
}
response = requests.post(f"{base_url}/svodka_ca/get_data", json=data)
print(f"📥 Результат: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Успешно: {result}")
else:
try:
error_detail = response.json()
print(f"❌ Ошибка: {error_detail}")
except:
print(f"❌ Ошибка: {response.text}")
except Exception as e:
print(f"❌ Исключение: {e}")
# Тест 3: Тестирование эндпоинта svodka_pm/get_data
print("\n3⃣ Тестирование svodka_pm/get_data...")
try:
data = {
"getter": "single_og",
"id": "SNPZ",
"codes": [78, 79],
"columns": ["БП", "ПП"]
}
response = requests.post(f"{base_url}/svodka_pm/get_data", json=data)
print(f"📥 Результат: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Успешно: {result}")
else:
try:
error_detail = response.json()
print(f"❌ Ошибка: {error_detail}")
except:
print(f"❌ Ошибка: {response.text}")
except Exception as e:
print(f"❌ Исключение: {e}")
print("\n🎯 Тестирование завершено!")
if __name__ == "__main__":
test_api_endpoints()

96
test_ca_workflow.py Normal file
View File

@@ -0,0 +1,96 @@
#!/usr/bin/env python3
"""
Тестирование полного workflow с сводкой СА
"""
import requests
import os
import time
def test_ca_workflow():
"""Тестирование полного workflow с сводкой СА"""
base_url = "http://localhost:8000"
test_file = "python_parser/data/svodka_ca.xlsx"
print("🧪 ТЕСТ ПОЛНОГО WORKFLOW СВОДКИ СА")
print("=" * 50)
# Проверяем, что файл существует
if not os.path.exists(test_file):
print(f"❌ Файл {test_file} не найден")
return False
print(f"📁 Тестовый файл найден: {test_file}")
print(f"📏 Размер: {os.path.getsize(test_file)} байт")
# Шаг 1: Загружаем файл
print("\n1⃣ Загружаю файл сводки СА...")
try:
with open(test_file, 'rb') as f:
file_data = f.read()
files = {"file": ("svodka_ca.xlsx", file_data, "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")}
response = requests.post(f"{base_url}/svodka_ca/upload", files=files)
print(f"📤 Результат загрузки: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Файл загружен: {result}")
object_id = result.get('object_id', 'nin_excel_data_svodka_ca')
else:
print(f"❌ Ошибка загрузки: {response.status_code}")
try:
error_detail = response.json()
print(f"📋 Детали ошибки: {error_detail}")
except:
print(f"📋 Текст ошибки: {response.text}")
return False
except Exception as e:
print(f"❌ Ошибка загрузки: {e}")
return False
# Шаг 2: Получаем данные через геттер
print("\n2⃣ Получаю данные через геттер...")
try:
data = {
"getter": "get_data",
"modes": ["plan", "fact"], # Используем английские названия
"tables": ["ТиП", "Топливо"]
}
response = requests.post(f"{base_url}/svodka_ca/get_data", json=data)
print(f"📥 Результат получения данных: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Данные получены успешно!")
print(f"📊 Размер ответа: {len(str(result))} символов")
# Показываем структуру данных
if isinstance(result, dict):
print(f"🔍 Структура данных:")
for key, value in result.items():
if isinstance(value, dict):
print(f" {key}: {len(value)} элементов")
else:
print(f" {key}: {type(value).__name__}")
else:
print(f"❌ Ошибка получения данных: {response.status_code}")
try:
error_detail = response.json()
print(f"📋 Детали ошибки: {error_detail}")
except:
print(f"📋 Текст ошибки: {response.text}")
return False
except Exception as e:
print(f"❌ Ошибка получения данных: {e}")
return False
print("\n🎯 Тестирование завершено успешно!")
return True
if __name__ == "__main__":
test_ca_workflow()

110
test_minio_connection.py Normal file
View File

@@ -0,0 +1,110 @@
#!/usr/bin/env python3
"""
Тестовый скрипт для проверки подключения к MinIO
"""
import os
import sys
import io
from minio import Minio
def test_minio_connection():
"""Тестирование подключения к MinIO"""
print("🔍 Тестирование подключения к MinIO...")
# Параметры подключения
endpoint = os.getenv("MINIO_ENDPOINT", "localhost:9000")
access_key = os.getenv("MINIO_ACCESS_KEY", "minioadmin")
secret_key = os.getenv("MINIO_SECRET_KEY", "minioadmin")
bucket_name = os.getenv("MINIO_BUCKET", "svodka-data")
print(f"📍 Endpoint: {endpoint}")
print(f"🔑 Access Key: {access_key}")
print(f"🔐 Secret Key: {secret_key}")
print(f"🪣 Bucket: {bucket_name}")
try:
# Создаем клиент
print("\n🚀 Создаю MinIO клиент...")
client = Minio(
endpoint,
access_key=access_key,
secret_key=secret_key,
secure=False,
cert_check=False
)
# Проверяем подключение
print("✅ MinIO клиент создан")
# Проверяем bucket
print(f"\n🔍 Проверяю bucket '{bucket_name}'...")
if client.bucket_exists(bucket_name):
print(f"✅ Bucket '{bucket_name}' существует")
else:
print(f"⚠️ Bucket '{bucket_name}' не существует, создаю...")
client.make_bucket(bucket_name)
print(f"✅ Bucket '{bucket_name}' создан")
# Пробуем загрузить тестовый файл
print("\n📤 Тестирую загрузку файла...")
test_data = b"Hello MinIO!"
test_stream = io.BytesIO(test_data)
client.put_object(
bucket_name,
"test.txt",
test_stream,
length=len(test_data),
content_type='text/plain'
)
print("✅ Тестовый файл загружен")
# Пробуем скачать файл
print("\n📥 Тестирую скачивание файла...")
response = client.get_object(bucket_name, "test.txt")
downloaded_data = response.read()
print(f"✅ Файл скачан: {downloaded_data}")
# Удаляем тестовый файл
client.remove_object(bucket_name, "test.txt")
print("✅ Тестовый файл удален")
print("\n🎉 Все тесты MinIO прошли успешно!")
return True
except Exception as e:
print(f"\n❌ Ошибка подключения к MinIO: {e}")
print(f"Тип ошибки: {type(e).__name__}")
return False
def test_environment():
"""Проверка переменных окружения"""
print("🔧 Проверка переменных окружения:")
env_vars = [
"MINIO_ENDPOINT",
"MINIO_ACCESS_KEY",
"MINIO_SECRET_KEY",
"MINIO_BUCKET"
]
for var in env_vars:
value = os.getenv(var, "НЕ УСТАНОВЛЕНО")
print(f" {var}: {value}")
if __name__ == "__main__":
print("=" * 60)
print("🧪 ТЕСТ ПОДКЛЮЧЕНИЯ К MINIO")
print("=" * 60)
test_environment()
print()
success = test_minio_connection()
if success:
print("\n✅ MinIO работает корректно!")
sys.exit(0)
else:
print("\n❌ Проблемы с MinIO!")
sys.exit(1)

69
test_upload.py Normal file
View File

@@ -0,0 +1,69 @@
#!/usr/bin/env python3
"""
Тестирование загрузки Excel файла
"""
import requests
import os
def test_file_upload():
"""Тестирование загрузки файла"""
base_url = "http://localhost:8000"
filename = "test_file.xlsx"
print("🧪 ТЕСТ ЗАГРУЗКИ ФАЙЛА")
print("=" * 40)
# Проверяем, что файл существует
if not os.path.exists(filename):
print(f"❌ Файл {filename} не найден")
return False
print(f"📁 Файл найден: {filename}")
print(f"📏 Размер: {os.path.getsize(filename)} байт")
# Тестируем загрузку в разные парсеры
parsers = [
("svodka_ca", "/svodka_ca/upload", "file"),
("monitoring_fuel", "/monitoring_fuel/upload-zip", "zip_file"),
("svodka_pm", "/svodka_pm/upload-zip", "zip_file")
]
for parser_name, endpoint, file_param in parsers:
print(f"\n🔍 Тестирую {parser_name}...")
try:
# Читаем файл
with open(filename, 'rb') as f:
file_data = f.read()
# Определяем content type
if filename.endswith('.xlsx'):
content_type = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
else:
content_type = "application/octet-stream"
# Загружаем файл с правильным параметром
files = {file_param: (filename, file_data, content_type)}
response = requests.post(f"{base_url}{endpoint}", files=files)
print(f"📤 Результат: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"✅ Успешно: {result}")
else:
try:
error_detail = response.json()
print(f"❌ Ошибка: {error_detail}")
except:
print(f"❌ Ошибка: {response.text}")
except Exception as e:
print(f"❌ Исключение: {e}")
print("\n🎯 Тестирование завершено!")
return True
if __name__ == "__main__":
test_file_upload()