2 Commits

Author SHA1 Message Date
9459196804 all in docker 2025-09-01 12:24:37 +03:00
ce228d9756 work 2025-09-01 12:08:16 +03:00
51 changed files with 1546 additions and 888 deletions

161
.gitignore vendored
View File

@@ -1,8 +1,13 @@
# Python
data/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
@@ -15,82 +20,26 @@ lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# Virtual environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# IDE
.vscode/
.idea/
*.swp
*.swo
*~
# OS
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db
Desktop.ini
# Logs
*.log
logs/
log/
# MinIO data and cache
minio_data/
.minio.sys/
*.meta
part.*
# Docker
.dockerignore
docker-compose.override.yml
# Environment variables
.env
.env.local
.env.development.local
.env.test.local
.env.production.local
# Temporary files
*.tmp
*.temp
*.bak
*.backup
*.orig
# Data files (Excel, CSV, etc.)
*.xlsx
*.xls
*.xlsm
*.csv
*.json
data/
uploads/
# Cache directories
.cache/
.pytest_cache/
.coverage
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Jupyter Notebook
.ipynb_checkpoints
@@ -98,29 +47,6 @@ htmlcov/
# pyenv
.python-version
# pipenv
Pipfile.lock
# poetry
poetry.lock
# Celery
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
@@ -129,27 +55,36 @@ dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# VS Code
.vscode/
# Cython debug symbols
cython_debug/
# PyCharm
.idea/
# Local development
local_settings.py
db.sqlite3
db.sqlite3-journal
# Local envs
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# FastAPI
.pytest_cache/
.coverage
htmlcov/
# MacOS
.DS_Store
# Streamlit
.streamlit/secrets.toml
# Windows
Thumbs.db
ehthumbs.db
Desktop.ini
# Node.js (if any frontend components)
node_modules/
npm-debug.log*
yarn-debug.log*
yarn-error.log*
# MinIO test data
minio_data/
minio_test/
minio/
# Logs
*.log
# Streamlit cache
.streamlit/

View File

@@ -1,41 +0,0 @@
# 🚀 Быстрый запуск проекта
## 1. Запуск всех сервисов
```bash
docker compose up -d
```
## 2. Проверка статуса
```bash
docker compose ps
```
## 3. Доступ к сервисам
- **FastAPI**: http://localhost:8000
- **Streamlit**: http://localhost:8501
- **MinIO Console**: http://localhost:9001
- **MinIO API**: http://localhost:9000
## 4. Остановка
```bash
docker compose down
```
## 5. Просмотр логов
```bash
# Все сервисы
docker compose logs
# Конкретный сервис
docker compose logs fastapi
docker compose logs streamlit
docker compose logs minio
```
## 6. Пересборка и перезапуск
```bash
docker compose up -d --build
```
---
**Примечание**: При первом запуске Docker будет скачивать образы и собирать контейнеры, это может занять несколько минут.

117
README.md
View File

@@ -1,117 +0,0 @@
# Python Parser CF - Система анализа данных
Проект состоит из трех основных компонентов:
- **python_parser** - FastAPI приложение для парсинга и обработки данных
- **streamlit_app** - Streamlit приложение для визуализации и анализа
- **minio_data** - хранилище данных MinIO
## 🚀 Быстрый запуск
### Предварительные требования
- Docker и Docker Compose
- Git
### Запуск всех сервисов (продакшн)
```bash
docker compose up -d
```
### Запуск в режиме разработки
```bash
# Автоматический запуск
python start_dev.py
# Или вручную
docker compose -f docker-compose.dev.yml up -d
```
**Режим разработки** позволяет:
- Автоматически перезагружать Streamlit при изменении кода
- Монтировать исходный код напрямую в контейнер
- Видеть изменения без пересборки контейнеров
### Доступ к сервисам
- **FastAPI**: http://localhost:8000
- **Streamlit**: http://localhost:8501
- **MinIO Console**: http://localhost:9001
- **MinIO API**: http://localhost:9000
### Остановка сервисов
```bash
docker-compose down
```
## 📁 Структура проекта
```
python_parser_cf/
├── python_parser/ # FastAPI приложение
│ ├── app/ # Основной код приложения
│ ├── adapters/ # Адаптеры для парсеров
│ ├── core/ # Основная бизнес-логика
│ ├── data/ # Тестовые данные
│ └── Dockerfile # Docker образ для FastAPI
├── streamlit_app/ # Streamlit приложение
│ ├── streamlit_app.py # Основной файл приложения
│ ├── requirements.txt # Зависимости Python
│ ├── .streamlit/ # Конфигурация Streamlit
│ └── Dockerfile # Docker образ для Streamlit
├── minio_data/ # Данные для MinIO
├── docker-compose.yml # Конфигурация всех сервисов
└── README.md # Документация
```
## 🔧 Конфигурация
### Переменные окружения
Все сервисы используют следующие переменные окружения:
- `MINIO_ENDPOINT` - адрес MinIO сервера
- `MINIO_ACCESS_KEY` - ключ доступа к MinIO
- `MINIO_SECRET_KEY` - секретный ключ MinIO
- `MINIO_SECURE` - использование SSL/TLS
- `MINIO_BUCKET` - имя bucket'а для данных
### Порты
- **8000** - FastAPI
- **8501** - Streamlit
- **9000** - MinIO API
- **9001** - MinIO Console
## 📊 Использование
1. **Запустите все сервисы**: `docker-compose up -d`
2. **Откройте Streamlit**: http://localhost:8501
3. **Выберите тип данных** для анализа
4. **Просматривайте результаты** в интерактивном интерфейсе
## 🛠️ Разработка
### Режим разработки (рекомендуется)
```bash
# Запуск режима разработки
python start_dev.py
# Остановка
docker compose -f docker-compose.dev.yml down
# Возврат к продакшн режиму
python start_prod.py
```
### Локальная разработка FastAPI
```bash
cd python_parser
pip install -r requirements.txt
uvicorn app.main:app --reload
```
### Локальная разработка Streamlit
```bash
cd streamlit_app
pip install -r requirements.txt
streamlit run streamlit_app.py
```
## 📝 Лицензия
Проект разработан для внутреннего использования.

View File

@@ -1,58 +0,0 @@
services:
minio:
image: minio/minio:latest
container_name: svodka_minio_dev
ports:
- "9000:9000" # API порт
- "9001:9001" # Консоль порт
environment:
MINIO_ROOT_USER: minioadmin
MINIO_ROOT_PASSWORD: minioadmin
command: server /data --console-address ":9001"
volumes:
- ./minio_data:/data
restart: unless-stopped
fastapi:
build: ./python_parser
container_name: svodka_fastapi_dev
ports:
- "8000:8000"
environment:
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
depends_on:
- minio
restart: unless-stopped
streamlit:
image: python:3.11-slim
container_name: svodka_streamlit_dev
ports:
- "8501:8501"
environment:
- API_BASE_URL=http://fastapi:8000
- API_PUBLIC_URL=http://localhost:8000
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
volumes:
# Монтируем исходный код для автоматической перезагрузки
- ./streamlit_app:/app
# Монтируем requirements.txt для установки зависимостей
- ./streamlit_app/requirements.txt:/app/requirements.txt
working_dir: /app
depends_on:
- minio
- fastapi
restart: unless-stopped
command: >
bash -c "
pip install --no-cache-dir -r requirements.txt &&
streamlit run streamlit_app.py --server.port=8501 --server.address=0.0.0.0 --server.runOnSave=true
"

View File

@@ -0,0 +1,28 @@
[server]
port = 8501
address = "localhost"
headless = false
enableCORS = false
enableXsrfProtection = false
[browser]
gatherUsageStats = false
serverAddress = "localhost"
serverPort = 8501
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
secondaryBackgroundColor = "#F0F2F6"
textColor = "#262730"
font = "sans serif"
[client]
showErrorDetails = true
caching = true
displayEnabled = true
[runner]
magicEnabled = true
installTracer = false
fixMatplotlib = true

20
python_parser/Dockerfile_ Normal file
View File

@@ -0,0 +1,20 @@
FROM repo-dev.predix.rosneft.ru/python:3.11-slim
WORKDIR /app
# RUN pip install kafka-python==2.0.2
# RUN pip freeze > /app/requirements.txt
# ADD . /app
COPY requirements.txt .
RUN mkdir -p vendor
RUN pip download -r /app/requirements.txt --no-binary=:none: -d /app/vendor
# ADD . /app
# ENV KAFKA_BROKER=10.234.160.10:9093,10.234.160.10:9094,10.234.160.10:9095
# ENV KAFKA_UPDATE_ALGORITHM_RULES_TOPIC=algorithm-rule-update
# ENV KAFKA_CLIENT_USERNAME=cf-service
# CMD ["python", "/app/run_dev.py"]

1
python_parser/Procfile Normal file
View File

@@ -0,0 +1 @@
web: python /app/run_stand.py

View File

@@ -0,0 +1,66 @@
# 🚀 Быстрый старт NIN Excel Parsers API
## 🐳 Запуск через Docker (рекомендуется)
### Вариант 1: MinIO + FastAPI в Docker
```bash
# Запуск всех сервисов
docker-compose up -d --build
# Проверка
curl http://localhost:8000
curl http://localhost:9001
```
### Вариант 2: Только MinIO в Docker
```bash
# Запуск только MinIO
docker-compose up -d minio
# Проверка
curl http://localhost:9001
```
## 🖥️ Запуск FastAPI локально
```bash
# Если MinIO в Docker
python run_dev.py
# Проверка
curl http://localhost:8000
```
## 📊 Запуск Streamlit
```bash
# В отдельном терминале
python run_streamlit.py
```
## 🌐 Доступные URL
- **FastAPI API**: http://localhost:8000
- **API документация**: http://localhost:8000/docs
- **MinIO консоль**: http://localhost:9001
- **Streamlit интерфейс**: http://localhost:8501
## 🛑 Остановка
```bash
# Остановка Docker
docker-compose down
# Остановка Streamlit
# Ctrl+C в терминале
```
## 🔧 Диагностика
```bash
# Проверка состояния
python check_services.py
# Просмотр логов Docker
docker-compose logs
```

143
python_parser/README.md Normal file
View File

@@ -0,0 +1,143 @@
# NIN Excel Parsers API
API для парсинга Excel отчетов нефтеперерабатывающих заводов (НПЗ) с использованием FastAPI и MinIO для хранения данных.
## 🚀 Быстрый запуск
### **Вариант 1: Все сервисы в Docker (рекомендуется)**
```bash
# Запуск всех сервисов: MinIO + FastAPI + Streamlit
docker-compose up -d
# Доступ:
# - MinIO Console: http://localhost:9001
# - FastAPI: http://localhost:8000
# - Streamlit: http://localhost:8501
# - API Docs: http://localhost:8000/docs
```
### **Вариант 2: Только MinIO в Docker + FastAPI локально**
```bash
# Запуск MinIO в Docker
docker-compose up -d minio
# Запуск FastAPI локально
python run_dev.py
# В отдельном терминале запуск Streamlit
cd streamlit_app
streamlit run app.py
```
### **Вариант 3: Только MinIO в Docker**
```bash
# Запуск только MinIO
docker-compose up -d minio
```
## 📋 Описание сервисов
- **MinIO** (порт 9000-9001): S3-совместимое хранилище для данных
- **FastAPI** (порт 8000): API сервер для парсинга Excel файлов
- **Streamlit** (порт 8501): Веб-интерфейс для демонстрации API
## 🛑 Остановка
### Остановка Docker сервисов:
```bash
# Все сервисы
docker-compose down
# Только MinIO
docker-compose stop minio
```
### Остановка локальных сервисов:
```bash
# Нажмите Ctrl+C в терминале с FastAPI/Streamlit
```
## 📁 Структура проекта
```
python_parser/
├── app/ # FastAPI приложение
│ ├── main.py # Основной файл приложения
│ └── schemas/ # Pydantic схемы
├── core/ # Бизнес-логика
│ ├── models.py # Модели данных
│ ├── ports.py # Интерфейсы (порты)
│ └── services.py # Сервисы
├── adapters/ # Адаптеры для внешних систем
│ ├── storage.py # MinIO адаптер
│ └── parsers/ # Парсеры Excel файлов
├── streamlit_app/ # Изолированный Streamlit пакет
│ ├── app.py # Основное Streamlit приложение
│ ├── requirements.txt # Зависимости Streamlit
│ ├── Dockerfile # Docker образ для Streamlit
│ └── .streamlit/ # Конфигурация Streamlit
├── data/ # Тестовые данные
├── docker-compose.yml # Docker Compose конфигурация
├── Dockerfile # Docker образ для FastAPI
└── run_dev.py # Запуск FastAPI локально
```
## 🔍 Доступные эндпоинты
- **GET /** - Информация об API
- **GET /docs** - Swagger документация
- **GET /parsers** - Список доступных парсеров
- **GET /parsers/{parser_name}/getters** - Информация о геттерах парсера
- **POST /svodka_pm/upload-zip** - Загрузка сводок ПМ
- **POST /svodka_ca/upload** - Загрузка сводок ЦА
- **POST /monitoring_fuel/upload-zip** - Загрузка мониторинга топлива
- **POST /svodka_pm/get_data** - Получение данных сводок ПМ
- **POST /svodka_ca/get_data** - Получение данных сводок ЦА
- **POST /monitoring_fuel/get_data** - Получение данных мониторинга топлива
## 📊 Поддерживаемые типы отчетов
1. **svodka_pm** - Сводки по переработке нефти (ПМ)
- Геттеры: `single_og`, `total_ogs`
2. **svodka_ca** - Сводки по переработке нефти (ЦА)
- Геттеры: `get_data`
3. **monitoring_fuel** - Мониторинг топлива
- Геттеры: `total_by_columns`, `month_by_code`
## 🏗️ Архитектура
Проект использует **Hexagonal Architecture (Ports and Adapters)**:
- **Порты (Ports)**: Интерфейсы для бизнес-логики
- **Адаптеры (Adapters)**: Реализации для внешних систем
- **Сервисы (Services)**: Бизнес-логика приложения
### Система геттеров парсеров
Каждый парсер может иметь несколько методов получения данных (геттеров):
- Регистрация геттеров в словаре с метаданными
- Валидация параметров для каждого геттера
- Единый интерфейс `get_value(getter_name, params)`
## 🐳 Docker
### Сборка образов:
```bash
# FastAPI
docker build -t nin-fastapi .
# Streamlit
docker build -t nin-streamlit ./streamlit_app
```
### Запуск отдельных сервисов:
```bash
# Только MinIO
docker-compose up -d minio
# MinIO + FastAPI
docker-compose up -d minio fastapi
# Все сервисы
docker-compose up -d
```

View File

@@ -0,0 +1,186 @@
# 🚀 Streamlit Demo для NIN Excel Parsers API
## Описание
Streamlit приложение для демонстрации работы всех API эндпоинтов NIN Excel Parsers. Предоставляет удобный веб-интерфейс для тестирования функциональности парсеров.
## Возможности
- 📤 **Загрузка файлов**: Загрузка ZIP архивов и Excel файлов
- 📊 **Сводки ПМ**: Работа с плановыми и фактическими данными
- 🏭 **Сводки СА**: Парсинг сводок центрального аппарата
-**Мониторинг топлива**: Анализ данных по топливу
- 📱 **Адаптивный интерфейс**: Удобное использование на всех устройствах
## Установка и запуск
### 1. Установка зависимостей
```bash
pip install -r requirements.txt
```
### 2. Запуск FastAPI сервера
В одном терминале:
```bash
python run_dev.py
```
### 3. Запуск Streamlit приложения
В другом терминале:
```bash
python run_streamlit.py
```
Или напрямую:
```bash
streamlit run streamlit_app.py
```
### 4. Открытие в браузере
Приложение автоматически откроется по адресу: http://localhost:8501
## Конфигурация
### Переменные окружения
```bash
# URL API сервера
export API_BASE_URL="http://localhost:8000"
# Порт Streamlit
export STREAMLIT_PORT="8501"
# Хост Streamlit
export STREAMLIT_HOST="localhost"
```
### Настройки Streamlit
Файл `.streamlit/config.toml` содержит настройки:
- Порт: 8501
- Хост: localhost
- Тема: Кастомная цветовая схема
- Безопасность: Отключены CORS и XSRF для локальной разработки
## Структура приложения
### Вкладки
1. **📤 Загрузка файлов**
- Загрузка сводок ПМ (ZIP)
- Загрузка мониторинга топлива (ZIP)
- Загрузка сводки СА (Excel)
2. **📊 Сводки ПМ**
- Данные по одному ОГ
- Данные по всем ОГ
- Выбор кодов строк и столбцов
3. **🏭 Сводки СА**
- Выбор режимов (план/факт/норматив)
- Выбор таблиц для анализа
4. **⛽ Мониторинг топлива**
- Агрегация по колонкам
- Данные за конкретный месяц
### Боковая панель
- Информация о сервере (PID, CPU, память)
- Список доступных парсеров
- Статус подключения к API
## Использование
### 1. Загрузка файлов
1. Выберите соответствующий тип файла
2. Нажмите "Загрузить"
3. Дождитесь подтверждения загрузки
### 2. Получение данных
1. Выберите нужные параметры (ОГ, коды, столбцы)
2. Нажмите "Получить данные"
3. Результат отобразится в JSON формате
### 3. Мониторинг
- Проверяйте статус API в верхней части
- Следите за логами операций
- Используйте индикаторы загрузки
## Устранение неполадок
### API недоступен
```bash
# Проверьте, запущен ли FastAPI сервер
curl http://localhost:8000/
# Проверьте порт
netstat -an | grep 8000
```
### Streamlit не запускается
```bash
# Проверьте версию Python
python --version
# Переустановите Streamlit
pip uninstall streamlit
pip install streamlit
# Проверьте порт 8501
netstat -an | grep 8501
```
### Ошибки загрузки файлов
- Убедитесь, что файл соответствует формату
- Проверьте размер файла (не более 100MB)
- Убедитесь, что MinIO запущен
## Разработка
### Добавление новых функций
1. Создайте новую вкладку в `streamlit_app.py`
2. Добавьте соответствующие API вызовы
3. Обновите боковую панель при необходимости
### Кастомизация темы
Отредактируйте `.streamlit/config.toml`:
```toml
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
# ... другие цвета
```
### Добавление новых парсеров
1. Создайте парсер в `adapters/parsers/`
2. Добавьте в `main.py`
3. Обновите Streamlit интерфейс
## Безопасность
⚠️ **Внимание**: Приложение настроено для локальной разработки
- CORS отключен
- XSRF защита отключена
- Не используйте в продакшене без дополнительной настройки
## Поддержка
При возникновении проблем:
1. Проверьте логи в терминале
2. Убедитесь, что все сервисы запущены
3. Проверьте конфигурацию
4. Обратитесь к документации API: http://localhost:8000/docs

View File

@@ -1,9 +1,9 @@
import pandas as pd
import re
from typing import Dict
import zipfile
from typing import Dict, Tuple
from core.ports import ParserPort
from adapters.pconfig import data_to_json, get_object_by_name
from adapters.pconfig import data_to_json
class MonitoringFuelParser(ParserPort):
@@ -11,6 +11,82 @@ class MonitoringFuelParser(ParserPort):
name = "Мониторинг топлива"
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
self.register_getter(
name="total_by_columns",
method=self._get_total_by_columns,
required_params=["columns"],
optional_params=[],
description="Агрегация данных по колонкам"
)
self.register_getter(
name="month_by_code",
method=self._get_month_by_code,
required_params=["month"],
optional_params=[],
description="Получение данных за конкретный месяц"
)
def _get_total_by_columns(self, params: dict):
"""Агрегация по колонкам (обертка для совместимости)"""
columns = params["columns"]
if not columns:
raise ValueError("Отсутствуют идентификаторы столбцов")
# TODO: Переделать под новую архитектуру
df_means, _ = self.aggregate_by_columns(self.df, columns)
return df_means.to_dict(orient='index')
def _get_month_by_code(self, params: dict):
"""Получение данных за месяц (обертка для совместимости)"""
month = params["month"]
if not month:
raise ValueError("Отсутствует идентификатор месяца")
# TODO: Переделать под новую архитектуру
df_month = self.get_month(self.df, month)
return df_month.to_dict(orient='index')
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_monitoring_fuel_files(file_path, params)
return self.df
def parse_monitoring_fuel_files(self, zip_path: str, params: dict) -> Dict[str, pd.DataFrame]:
"""Парсинг ZIP архива с файлами мониторинга топлива"""
df_monitorings = {} # ЭТО СЛОВАРЬ ДАТАФРЕЙМОВ, ГДЕ КЛЮЧ - НОМЕР МЕСЯЦА, ЗНАЧЕНИЕ - ДАТАФРЕЙМ
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
for month in range(1, 13):
mm = f"{month:02d}"
file_temp = f'monitoring_SNPZ_{mm}.xlsm'
candidates = [f for f in file_list if file_temp in f]
if len(candidates) == 1:
file = candidates[0]
print(f'Загрузка {file}')
with zip_ref.open(file) as excel_file:
try:
df = self.parse_single(excel_file, 'Мониторинг потребления')
df_monitorings[mm] = df
print(f"✅ Данные за месяц {mm} загружены")
except Exception as e:
print(f"Ошибка при загрузке файла {file_temp}: {e}")
else:
print(f"⚠️ Файл не найден: {file_temp}")
return df_monitorings
def find_header_row(self, file_path: str, sheet: str, search_value: str = "Установка", max_rows: int = 50) -> int:
"""Определение индекса заголовка в Excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
@@ -64,46 +140,15 @@ class MonitoringFuelParser(ParserPort):
# Проверяем, что колонка 'name' существует
if 'name' in df_full.columns:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
df_full['id'] = df_full['name'].apply(get_object_by_name)
# df_full['id'] = df_full['name'].apply(get_object_by_name) # This line was removed as per new_code
pass # Placeholder for new_code
# Устанавливаем id как индекс
df_full.set_index('id', inplace=True)
print(f"Окончательное количество столбцов: {len(df_full.columns)}")
return df_full
def parse(self, file_path: str, params: dict) -> dict:
import zipfile
df_monitorings = {} # ЭТО СЛОВАРЬ ДАТАФРЕЙМОВ, ГДЕ КЛЮЧ - НОМЕР МЕСЯЦА, ЗНАЧЕНИЕ - ДАТАФРЕЙМ
with zipfile.ZipFile(file_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
for month in range(1, 13):
mm = f"{month:02d}"
file_temp = f'monitoring_SNPZ_{mm}.xlsm'
candidates = [f for f in file_list if file_temp in f]
if len(candidates) == 1:
file = candidates[0]
print(f'Загрузка {file}')
with zip_ref.open(file) as excel_file:
try:
df = self.parse_single(excel_file, 'Мониторинг потребления')
df_monitorings[mm] = df
print(f"✅ Данные за месяц {mm} загружены")
except Exception as e:
print(f"Ошибка при загрузке файла {file_temp}: {e}")
else:
print(f"⚠️ Файл не найден: {file_temp}")
return df_monitorings
def aggregate_by_columns(self, df_dict: Dict[str, pd.DataFrame], columns):
def aggregate_by_columns(self, df_dict: Dict[str, pd.DataFrame], columns: list) -> Tuple[pd.DataFrame, Dict[str, pd.DataFrame]]:
''' Служебная функция. Агрегация данных по среднему по определенным колонкам. '''
all_data = {} # Для хранения полных данных (месяцы) по каждой колонке
means = {} # Для хранения средних
@@ -185,22 +230,3 @@ class MonitoringFuelParser(ParserPort):
total.name = 'mean'
return total, df_combined
def get_value(self, df, params):
mode = params.get("mode", "total")
columns = params.get("columns", None)
month = params.get("month", None)
data = None
if mode == "total":
if not columns:
raise ValueError("Отсутствуют идентификаторы столбцов")
df_means, _ = self.aggregate_by_columns(df, columns)
data = df_means.to_dict(orient='index')
elif mode == "month":
if not month:
raise ValueError("Отсутствуют идентификатор месяца")
df_month = self.get_month(df, month)
data = df_month.to_dict(orient='index')
json_result = data_to_json(data)
return json_result

View File

@@ -6,85 +6,44 @@ from adapters.pconfig import get_og_by_name
class SvodkaCAParser(ParserPort):
"""Парсер для сводки СА"""
"""Парсер для сводок СА"""
name = "Сводка СА"
name = "Сводки СА"
def extract_all_tables(self, file_path, sheet_name=0):
"""Извлекает все таблицы из Excel файла"""
df = pd.read_excel(file_path, sheet_name=sheet_name, header=None)
df_filled = df.fillna('')
df_clean = df_filled.astype(str).replace(r'^\s*$', '', regex=True)
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
self.register_getter(
name="get_data",
method=self._get_data_wrapper,
required_params=["modes", "tables"],
optional_params=[],
description="Получение данных по режимам и таблицам"
)
non_empty_rows = ~(df_clean.eq('').all(axis=1))
non_empty_cols = ~(df_clean.eq('').all(axis=0))
def _get_data_wrapper(self, params: dict):
"""Обертка для получения данных (для совместимости)"""
modes = params["modes"]
tables = params["tables"]
if not isinstance(modes, list):
raise ValueError("Поле 'modes' должно быть списком")
if not isinstance(tables, list):
raise ValueError("Поле 'tables' должно быть списком")
# TODO: Переделать под новую архитектуру
data_dict = {}
for mode in modes:
data_dict[mode] = self.get_data(self.df, mode, tables)
return self.data_dict_to_json(data_dict)
row_indices = non_empty_rows[non_empty_rows].index.tolist()
col_indices = non_empty_cols[non_empty_cols].index.tolist()
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_svodka_ca(file_path, params)
return self.df
if not row_indices or not col_indices:
return []
row_blocks = self._get_contiguous_blocks(row_indices)
col_blocks = self._get_contiguous_blocks(col_indices)
tables = []
for r_start, r_end in row_blocks:
for c_start, c_end in col_blocks:
block = df.iloc[r_start:r_end + 1, c_start:c_end + 1]
if block.empty or block.fillna('').astype(str).replace(r'^\s*$', '', regex=True).eq('').all().all():
continue
if self._is_header_row(block.iloc[0]):
block.columns = block.iloc[0]
block = block.iloc[1:].reset_index(drop=True)
else:
block = block.reset_index(drop=True)
block.columns = [f"col_{i}" for i in range(block.shape[1])]
tables.append(block)
return tables
def _get_contiguous_blocks(self, indices):
"""Группирует индексы в непрерывные блоки"""
if not indices:
return []
blocks = []
start = indices[0]
for i in range(1, len(indices)):
if indices[i] != indices[i-1] + 1:
blocks.append((start, indices[i-1]))
start = indices[i]
blocks.append((start, indices[-1]))
return blocks
def _is_header_row(self, series):
"""Определяет, похожа ли строка на заголовок"""
series_str = series.astype(str).str.strip()
non_empty = series_str[series_str != '']
if len(non_empty) == 0:
return False
def is_not_numeric(val):
try:
float(val.replace(',', '.'))
return False
except (ValueError, TypeError):
return True
not_numeric_count = non_empty.apply(is_not_numeric).sum()
return not_numeric_count / len(non_empty) > 0.6
def _get_og_by_name(self, name):
"""Функция для получения ID по имени (упрощенная версия)"""
# Упрощенная версия - возвращаем имя как есть
if not name or not isinstance(name, str):
return None
return name.strip()
def parse_sheet(self, file_path, sheet_name, inclusion_list):
"""Собственно функция парсинга отчета СА"""
def parse_svodka_ca(self, file_path: str, params: dict) -> dict:
"""Парсинг сводки СА"""
# === Извлечение и фильтрация ===
tables = self.extract_all_tables(file_path, sheet_name)
@@ -190,76 +149,185 @@ class SvodkaCAParser(ParserPort):
else:
return None
def parse(self, file_path: str, params: dict) -> dict:
"""Парсинг файла сводки СА"""
# === Точка входа. Нужно выгрузить три таблицы: План, Факт и Норматив ===
# Выгружаем План в df_ca_plan
inclusion_list_plan = {
"ТиП, %",
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн**",
"в т.ч. Идентифицированные безвозвратные потери, %**",
"в т.ч. Неидентифицированные потери, тонн**",
"в т.ч. Неидентифицированные потери, %**"
}
def extract_all_tables(self, file_path, sheet_name=0):
"""Извлекает все таблицы из Excel файла"""
df = pd.read_excel(file_path, sheet_name=sheet_name, header=None)
df_filled = df.fillna('')
df_clean = df_filled.astype(str).replace(r'^\s*$', '', regex=True)
df_ca_plan = self.parse_sheet(file_path, 'План', inclusion_list_plan) # ЭТО ДАТАФРЕЙМ ПЛАНА В СВОДКЕ ЦА
print(f"\n--- Объединённый и отсортированный План: {df_ca_plan.shape} ---")
non_empty_rows = ~(df_clean.eq('').all(axis=1))
non_empty_cols = ~(df_clean.eq('').all(axis=0))
# Выгружаем Факт
inclusion_list_fact = {
"ТиП, %",
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн",
"в т.ч. Идентифицированные безвозвратные потери, %",
"в т.ч. Неидентифицированные потери, тонн",
"в т.ч. Неидентифицированные потери, %"
}
row_indices = non_empty_rows[non_empty_rows].index.tolist()
col_indices = non_empty_cols[non_empty_cols].index.tolist()
df_ca_fact = self.parse_sheet(file_path, 'Факт', inclusion_list_fact) # ЭТО ДАТАФРЕЙМ ФАКТА В СВОДКЕ ЦА
print(f"\n--- Объединённый и отсортированный Факт: {df_ca_fact.shape} ---")
if not row_indices or not col_indices:
return []
# Выгружаем План в df_ca_normativ
inclusion_list_normativ = {
"Топливо итого, тонн",
"Топливо итого, %",
"Топливо на технологию, тонн",
"Топливо на технологию, %",
"Топливо на энергетику, тонн",
"Топливо на энергетику, %",
"Потери итого, тонн",
"Потери итого, %",
"в т.ч. Идентифицированные безвозвратные потери, тонн**",
"в т.ч. Идентифицированные безвозвратные потери, %**",
"в т.ч. Неидентифицированные потери, тонн**",
"в т.ч. Неидентифицированные потери, %**"
}
row_blocks = self._get_contiguous_blocks(row_indices)
col_blocks = self._get_contiguous_blocks(col_indices)
# ЭТО ДАТАФРЕЙМ НОРМАТИВА В СВОДКЕ ЦА
df_ca_normativ = self.parse_sheet(file_path, 'Норматив', inclusion_list_normativ)
tables = []
for r_start, r_end in row_blocks:
for c_start, c_end in col_blocks:
block = df.iloc[r_start:r_end + 1, c_start:c_end + 1]
if block.empty or block.fillna('').astype(str).replace(r'^\s*$', '', regex=True).eq('').all().all():
continue
print(f"\n--- Объединённый и отсортированный Норматив: {df_ca_normativ.shape} ---")
if self._is_header_row(block.iloc[0]):
block.columns = block.iloc[0]
block = block.iloc[1:].reset_index(drop=True)
else:
block = block.reset_index(drop=True)
block.columns = [f"col_{i}" for i in range(block.shape[1])]
df_dict = {
"plan": df_ca_plan,
"fact": df_ca_fact,
"normativ": df_ca_normativ
}
return df_dict
tables.append(block)
return tables
def _get_contiguous_blocks(self, indices):
"""Группирует индексы в непрерывные блоки"""
if not indices:
return []
blocks = []
start = indices[0]
for i in range(1, len(indices)):
if indices[i] != indices[i-1] + 1:
blocks.append((start, indices[i-1]))
start = indices[i]
blocks.append((start, indices[-1]))
return blocks
def _is_header_row(self, series):
"""Определяет, похожа ли строка на заголовок"""
series_str = series.astype(str).str.strip()
non_empty = series_str[series_str != '']
if len(non_empty) == 0:
return False
def is_not_numeric(val):
try:
float(val.replace(',', '.'))
return False
except (ValueError, TypeError):
return True
not_numeric_count = non_empty.apply(is_not_numeric).sum()
return not_numeric_count / len(non_empty) > 0.6
def _get_og_by_name(self, name):
"""Функция для получения ID по имени (упрощенная версия)"""
# Упрощенная версия - возвращаем имя как есть
if not name or not isinstance(name, str):
return None
return name.strip()
def parse_sheet(self, file_path: str, sheet_name: str, inclusion_list: set) -> pd.DataFrame:
"""Парсинг листа Excel"""
# === Извлечение и фильтрация ===
tables = self.extract_all_tables(file_path, sheet_name)
# Фильтруем таблицы: оставляем только те, где первая строка содержит нужные заголовки
filtered_tables = []
for table in tables:
if table.empty:
continue
first_row_values = table.iloc[0].astype(str).str.strip().tolist()
if any(val in inclusion_list for val in first_row_values):
filtered_tables.append(table)
tables = filtered_tables
# === Итоговый список таблиц датафреймов ===
result_list = []
for table in tables:
if table.empty:
continue
# Получаем первую строку (до удаления)
first_row_values = table.iloc[0].astype(str).str.strip().tolist()
# Находим, какой элемент из inclusion_list присутствует
matched_key = None
for val in first_row_values:
if val in inclusion_list:
matched_key = val
break # берём первый совпадающий заголовок
if matched_key is None:
continue # на всякий случай (хотя уже отфильтровано)
# Удаляем первую строку (заголовок) и сбрасываем индекс
df_cleaned = table.iloc[1:].copy().reset_index(drop=True)
# Пропускаем, если таблица пустая
if df_cleaned.empty:
continue
# Первая строка становится заголовком
new_header = df_cleaned.iloc[0] # извлекаем первую строку как потенциальные названия столбцов
# Преобразуем заголовок: только первый столбец может быть заменён на "name"
cleaned_header = []
# Обрабатываем первый столбец отдельно
first_item = new_header.iloc[0] if isinstance(new_header, pd.Series) else new_header[0]
first_item_str = str(first_item).strip() if pd.notna(first_item) else ""
if first_item_str == "" or first_item_str == "nan":
cleaned_header.append("name")
else:
cleaned_header.append(first_item_str)
# Остальные столбцы добавляем без изменений (или с минимальной очисткой)
for item in new_header[1:]:
# Опционально: приводим к строке и убираем лишние пробелы, но не заменяем на "name"
item_str = str(item).strip() if pd.notna(item) else ""
cleaned_header.append(item_str)
# Применяем очищенные названия столбцов
df_cleaned = df_cleaned[1:] # удаляем строку с заголовком
df_cleaned.columns = cleaned_header
df_cleaned = df_cleaned.reset_index(drop=True)
if matched_key.endswith('**'):
cleaned_key = matched_key[:-2] # удаляем последние **
else:
cleaned_key = matched_key
# Добавляем новую колонку с именем параметра
df_cleaned["table"] = cleaned_key
# Проверяем, что колонка 'name' существует
if 'name' not in df_cleaned.columns:
print(
f"Внимание: колонка 'name' отсутствует в таблице для '{matched_key}'. Пропускаем добавление 'id'.")
continue # или обработать по-другому
else:
# Применяем функцию get_id_by_name к каждой строке в колонке 'name'
df_cleaned['id'] = df_cleaned['name'].apply(get_og_by_name)
# Удаляем строки, где id — None, NaN или пустой
df_cleaned = df_cleaned.dropna(subset=['id']) # dropna удаляет NaN
# Дополнительно: удаляем None (если не поймал dropna)
df_cleaned = df_cleaned[df_cleaned['id'].notna() & (df_cleaned['id'].astype(str) != 'None')]
# Добавляем в словарь
result_list.append(df_cleaned)
# === Объединение и сортировка по id (индекс) и table ===
if result_list:
combined_df = pd.concat(result_list, axis=0)
# Сортируем по индексу (id) и по столбцу 'table'
combined_df = combined_df.sort_values(by=['id', 'table'], axis=0)
# Устанавливаем id как индекс
# combined_df.set_index('id', inplace=True)
return combined_df
else:
return None
def data_dict_to_json(self, data_dict):
''' Служебная функция для парсинга словаря в json. '''
@@ -308,17 +376,3 @@ class SvodkaCAParser(ParserPort):
filtered_df = df[df['table'].isin(table_values)].copy()
result_dict = {key: group for key, group in filtered_df.groupby('table')}
return result_dict
def get_value(self, df: pd.DataFrame, params: dict):
modes = params.get("modes")
tables = params.get("tables")
if not isinstance(modes, list):
raise ValueError("Поле 'modes' должно быть списком")
if not isinstance(tables, list):
raise ValueError("Поле 'tables' должно быть списком")
# Собираем данные
data_dict = {}
for mode in modes:
data_dict[mode] = self.get_data(df, mode, tables)
return self.data_dict_to_json(data_dict)

View File

@@ -9,6 +9,60 @@ class SvodkaPMParser(ParserPort):
name = "Сводки ПМ"
def _register_default_getters(self):
"""Регистрация геттеров по умолчанию"""
self.register_getter(
name="single_og",
method=self._get_single_og,
required_params=["id", "codes", "columns"],
optional_params=["search"],
description="Получение данных по одному ОГ"
)
self.register_getter(
name="total_ogs",
method=self._get_total_ogs,
required_params=["codes", "columns"],
optional_params=["search"],
description="Получение данных по всем ОГ"
)
def _get_single_og(self, params: dict):
"""Получение данных по одному ОГ (обертка для совместимости)"""
og_id = params["id"]
codes = params["codes"]
columns = params["columns"]
search = params.get("search")
if not isinstance(codes, list):
raise ValueError("Поле 'codes' должно быть списком")
if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
# Здесь нужно получить DataFrame из self.df, но пока используем старую логику
# TODO: Переделать под новую архитектуру
return self.get_svodka_og(self.df, og_id, codes, columns, search)
def _get_total_ogs(self, params: dict):
"""Получение данных по всем ОГ (обертка для совместимости)"""
codes = params["codes"]
columns = params["columns"]
search = params.get("search")
if not isinstance(codes, list):
raise ValueError("Поле 'codes' должно быть списком")
if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
# TODO: Переделать под новую архитектуру
return self.get_svodka_total(self.df, codes, columns, search)
def parse(self, file_path: str, params: dict) -> pd.DataFrame:
"""Парсинг файла и возврат DataFrame"""
# Сохраняем DataFrame для использования в геттерах
self.df = self.parse_svodka_pm_files(file_path, params)
return self.df
def find_header_row(self, file: str, sheet: str, search_value: str = "Итого", max_rows: int = 50) -> int:
"""Определения индекса заголовка в excel по ключевому слову"""
# Читаем первые max_rows строк без заголовков
@@ -99,25 +153,25 @@ class SvodkaPMParser(ParserPort):
# Проверяем, является ли колонка пустой/некорректной
is_empty_or_unnamed = col_str.startswith('Unnamed') or col_str == '' or col_str.lower() == 'nan'
# Проверяем, начинается ли на "Итого"
if col_str.startswith('Итого'):
current_name = 'Итого'
last_good_name = current_name # обновляем last_good_name
new_columns.append(current_name)
elif is_empty_or_unnamed:
# Используем последнее хорошее имя
new_columns.append(last_good_name)
if is_empty_or_unnamed:
# Если это пустая колонка, используем последнее хорошее имя
if last_good_name:
new_columns.append(last_good_name)
else:
# Если нет хорошего имени, пропускаем
continue
else:
# Имя, полученное из exel
# Это хорошая колонка
last_good_name = col_str
new_columns.append(col_str)
# Применяем новые заголовки
df_final.columns = new_columns
print(f"Окончательное количество столбцов: {len(df_final.columns)}")
return df_final
def parse(self, file_path: str, params: dict) -> dict:
def parse_svodka_pm_files(self, zip_path: str, params: dict) -> dict:
"""Парсинг ZIP архива со сводками ПМ"""
import zipfile
pm_dict = {
"facts": {},
@@ -125,7 +179,7 @@ class SvodkaPMParser(ParserPort):
}
excel_fact_template = 'svodka_fact_pm_ID.xlsm'
excel_plan_template = 'svodka_plan_pm_ID.xlsx'
with zipfile.ZipFile(file_path, 'r') as zip_ref:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
for name, id in OG_IDS.items():
if id == 'BASH':
@@ -155,9 +209,9 @@ class SvodkaPMParser(ParserPort):
return pm_dict
def get_svodka_value(self, df_svodka, id, code, search_value=None):
''' Служебная функция для простой выборке по сводке '''
row_index = id
def get_svodka_value(self, df_svodka, code, search_value, search_value_filter=None):
''' Служебная функция получения значения по коду и столбцу '''
row_index = code
mask_value = df_svodka.iloc[0] == code
if search_value is None:
@@ -254,22 +308,4 @@ class SvodkaPMParser(ParserPort):
return total_result
def get_value(self, df, params):
og_id = params.get("id")
codes = params.get("codes")
columns = params.get("columns")
search = params.get("search")
mode = params.get("mode", "total")
if not isinstance(codes, list):
raise ValueError("Поле 'codes' должно быть списком")
if not isinstance(columns, list):
raise ValueError("Поле 'columns' должно быть списком")
data = None
if mode == "single":
if not og_id:
raise ValueError("Отсутствует идентификатор ОГ")
data = self.get_svodka_og(df, og_id, codes, columns, search)
elif mode == "total":
data = self.get_svodka_total(df, codes, columns, search)
json_result = data_to_json(data)
return json_result
# Убираем старый метод get_value, так как он теперь в базовом классе

View File

@@ -400,40 +400,40 @@ async def get_svodka_pm_total_ogs(
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
@app.post("/svodka_pm/get_data", tags=[SvodkaPMParser.name])
async def get_svodka_pm_data(
request_data: dict
):
report_service = get_report_service()
"""
Получение данных из отчета сводки факта СарНПЗ
# @app.post("/svodka_pm/get_data", tags=[SvodkaPMParser.name])
# async def get_svodka_pm_data(
# request_data: dict
# ):
# report_service = get_report_service()
# """
# Получение данных из отчета сводки факта СарНПЗ
- indicator_id: ID индикатора
- code: Код для поиска
- search_value: Опциональное значение для поиска
"""
try:
# Создаем запрос
request = DataRequest(
report_type='svodka_pm',
get_params=request_data
)
# - indicator_id: ID индикатора
# - code: Код для поиска
# - search_value: Опциональное значение для поиска
# """
# try:
# # Создаем запрос
# request = DataRequest(
# report_type='svodka_pm',
# get_params=request_data
# )
# Получаем данные
result = report_service.get_data(request)
# # Получаем данные
# result = report_service.get_data(request)
if result.success:
return {
"success": True,
"data": result.data
}
else:
raise HTTPException(status_code=404, detail=result.message)
# if result.success:
# return {
# "success": True,
# "data": result.data
# }
# else:
# raise HTTPException(status_code=404, detail=result.message)
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# except HTTPException:
# raise
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
@app.post("/svodka_ca/upload", tags=[SvodkaCAParser.name],
@@ -610,38 +610,38 @@ async def get_svodka_ca_data(
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
@app.post("/monitoring_fuel/get_data", tags=[MonitoringFuelParser.name])
async def get_monitoring_fuel_data(
request_data: dict
):
report_service = get_report_service()
"""
Получение данных из отчета мониторинга топлива
# @app.post("/monitoring_fuel/get_data", tags=[MonitoringFuelParser.name])
# async def get_monitoring_fuel_data(
# request_data: dict
# ):
# report_service = get_report_service()
# """
# Получение данных из отчета мониторинга топлива
- column: Название колонки для агрегации (normativ, total, total_svod)
"""
try:
# Создаем запрос
request = DataRequest(
report_type='monitoring_fuel',
get_params=request_data
)
# - column: Название колонки для агрегации (normativ, total, total_svod)
# """
# try:
# # Создаем запрос
# request = DataRequest(
# report_type='monitoring_fuel',
# get_params=request_data
# )
# Получаем данные
result = report_service.get_data(request)
# # Получаем данные
# result = report_service.get_data(request)
if result.success:
return {
"success": True,
"data": result.data
}
else:
raise HTTPException(status_code=404, detail=result.message)
# if result.success:
# return {
# "success": True,
# "data": result.data
# }
# else:
# raise HTTPException(status_code=404, detail=result.message)
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# except HTTPException:
# raise
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Внутренняя ошибка сервера: {str(e)}")
# @app.post("/monitoring_fuel/upload_directory", tags=[MonitoringFuelParser.name])

View File

@@ -1,5 +1,3 @@
# Продакшн конфигурация
# Для разработки используйте: docker compose -f docker-compose.dev.yml up -d
services:
minio:
image: minio/minio:latest
@@ -12,11 +10,11 @@ services:
MINIO_ROOT_PASSWORD: minioadmin
command: server /data --console-address ":9001"
volumes:
- ./minio_data:/data
- minio_data:/data
restart: unless-stopped
fastapi:
build: ./python_parser
build: .
container_name: svodka_fastapi
ports:
- "8000:8000"
@@ -37,13 +35,9 @@ services:
- "8501:8501"
environment:
- API_BASE_URL=http://fastapi:8000
- API_PUBLIC_URL=http://localhost:8000
- MINIO_ENDPOINT=minio:9000
- MINIO_ACCESS_KEY=minioadmin
- MINIO_SECRET_KEY=minioadmin
- MINIO_SECURE=false
- MINIO_BUCKET=svodka-data
depends_on:
- minio
- fastapi
restart: unless-stopped
restart: unless-stopped
volumes:
minio_data:

View File

@@ -0,0 +1,17 @@
applications:
- name: nin-python-parser-dev-test
buildpack: python_buildpack
health-check-type: web
services:
- logging-shared-dev
command: python /app/run_stand.py
path: .
disk_quota: 2G
memory: 4G
instances: 1
env:
MINIO_ENDPOINT: s3-region1.ppc-jv-dev.sibintek.ru
MINIO_ACCESS_KEY: 00a70fac02c1208446de
MINIO_SECRET_KEY: 1gk9tVYEEoH9ADRxb4kiAuCo6CCISdV6ie0p6oDO
MINIO_BUCKET: bucket-476684e7-1223-45ac-a101-8b5aeda487d6
MINIO_SECURE: false

View File

@@ -0,0 +1 @@
{"version":"1","format":"xl-single","id":"29118f57-702e-4363-9a41-9f06655e449d","xl":{"version":"3","this":"195a90f4-fc26-46a8-b6d4-0b50b99b1342","sets":[["195a90f4-fc26-46a8-b6d4-0b50b99b1342"]],"distributionAlgo":"SIPMOD+PARITY"}}

Binary file not shown.

View File

@@ -11,4 +11,5 @@ requests>=2.31.0
# pytest-cov>=4.0.0
# pytest-mock>=3.10.0
httpx>=0.24.0
numpy
numpy
streamlit>=1.28.0

View File

@@ -0,0 +1,60 @@
#!/usr/bin/env python3
"""
Запуск Streamlit интерфейса локально из изолированного пакета
"""
import subprocess
import sys
import webbrowser
import os
def main():
"""Основная функция"""
print("🚀 ЗАПУСК STREAMLIT ИЗ ИЗОЛИРОВАННОГО ПАКЕТА")
print("=" * 60)
print("Убедитесь, что FastAPI сервер запущен на порту 8000")
print("=" * 60)
# Проверяем, существует ли папка streamlit_app
if not os.path.exists("streamlit_app"):
print("❌ Папка streamlit_app не найдена")
print("Создайте изолированный пакет или используйте docker-compose up -d")
return
# Переходим в папку streamlit_app
os.chdir("streamlit_app")
# Проверяем, установлен ли Streamlit
try:
import streamlit
print(f"✅ Streamlit {streamlit.__version__} установлен")
except ImportError:
print("❌ Streamlit не установлен")
print("Установите: pip install -r requirements.txt")
return
print("\n🚀 Запускаю Streamlit...")
print("📍 URL: http://localhost:8501")
print("🛑 Для остановки нажмите Ctrl+C")
# Открываем браузер
try:
webbrowser.open("http://localhost:8501")
print("✅ Браузер открыт")
except Exception as e:
print(f"⚠️ Не удалось открыть браузер: {e}")
# Запускаем Streamlit
try:
subprocess.run([
sys.executable, "-m", "streamlit", "run", "app.py",
"--server.port", "8501",
"--server.address", "localhost",
"--server.headless", "false",
"--browser.gatherUsageStats", "false"
])
except KeyboardInterrupt:
print("\n👋 Streamlit остановлен")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1 @@
python-3.11.*

View File

@@ -16,8 +16,7 @@ st.set_page_config(
)
# Конфигурация API
API_BASE_URL = os.getenv("API_BASE_URL", "http://fastapi:8000") # Внутренний адрес для Docker
API_PUBLIC_URL = os.getenv("API_PUBLIC_URL", "http://localhost:8000") # Внешний адрес для пользователя
API_BASE_URL = os.getenv("API_BASE_URL", "http://localhost:8000")
def check_api_health():
"""Проверка доступности API"""
@@ -74,7 +73,7 @@ def main():
st.info("Убедитесь, что FastAPI сервер запущен")
return
st.success(f"✅ API доступен по адресу {API_PUBLIC_URL}")
st.success(f"✅ API доступен по адресу {API_BASE_URL}")
# Боковая панель с информацией
with st.sidebar:
@@ -374,7 +373,7 @@ def main():
# Футер
st.markdown("---")
st.markdown("### 📚 Документация API")
st.markdown(f"Полная документация доступна по адресу: {API_PUBLIC_URL}/docs")
st.markdown(f"Полная документация доступна по адресу: {API_BASE_URL}/docs")
# Информация о проекте
with st.expander(" О проекте"):

View File

@@ -0,0 +1,31 @@
__pycache__
*.pyc
*.pyo
*.pyd
.Python
env
pip-log.txt
pip-delete-this-directory.txt
.tox
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.log
.git
.mypy_cache
.pytest_cache
.hypothesis
.DS_Store
.env
.venv
venv/
ENV/
env/
.idea/
.vscode/
*.swp
*.swo
*~

View File

@@ -0,0 +1,23 @@
FROM python:3.11-slim
WORKDIR /app
# Устанавливаем системные зависимости
RUN apt-get update && apt-get install -y \
gcc \
&& rm -rf /var/lib/apt/lists/*
# Копируем файлы зависимостей
COPY requirements.txt .
# Устанавливаем Python зависимости
RUN pip install --no-cache-dir -r requirements.txt
# Копируем код приложения
COPY . .
# Открываем порт
EXPOSE 8501
# Команда запуска
CMD ["streamlit", "run", "app.py", "--server.port", "8501", "--server.address", "0.0.0.0"]

View File

@@ -0,0 +1,44 @@
# 📊 Streamlit App - NIN Excel Parsers API
Изолированное Streamlit приложение для демонстрации работы NIN Excel Parsers API.
## 🚀 Запуск
### Локально:
```bash
cd streamlit_app
pip install -r requirements.txt
streamlit run app.py
```
### В Docker:
```bash
docker build -t streamlit-app .
docker run -p 8501:8501 streamlit-app
```
## 🔧 Конфигурация
### Переменные окружения:
- `API_BASE_URL` - адрес FastAPI сервера (по умолчанию: `http://fastapi:8000`)
### Параметры Streamlit:
- Порт: 8501
- Адрес: 0.0.0.0 (для Docker)
- Режим: headless (для Docker)
## 📁 Структура
```
streamlit_app/
├── app.py # Основное приложение
├── requirements.txt # Зависимости Python
├── Dockerfile # Docker образ
├── .streamlit/ # Конфигурация Streamlit
│ └── config.toml # Настройки
└── README.md # Документация
```
## 🌐 Доступ
После запуска приложение доступно по адресу: **http://localhost:8501**

View File

@@ -0,0 +1,447 @@
import streamlit as st
import requests
import json
import pandas as pd
import io
import zipfile
from typing import Dict, Any
import os
# Конфигурация страницы
st.set_page_config(
page_title="NIN Excel Parsers API Demo",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Конфигурация API - используем переменную окружения или значение по умолчанию
API_BASE_URL = os.getenv("API_BASE_URL", "http://fastapi:8000")
def check_api_health():
"""Проверка доступности API"""
try:
response = requests.get(f"{API_BASE_URL}/", timeout=5)
return response.status_code == 200
except:
return False
def get_available_parsers():
"""Получение списка доступных парсеров"""
try:
response = requests.get(f"{API_BASE_URL}/parsers")
if response.status_code == 200:
return response.json()["parsers"]
return []
except:
return []
def get_parser_getters(parser_name: str):
"""Получение информации о геттерах парсера"""
try:
response = requests.get(f"{API_BASE_URL}/parsers/{parser_name}/getters")
if response.status_code == 200:
return response.json()
return {}
except:
return {}
def get_server_info():
"""Получение информации о сервере"""
try:
response = requests.get(f"{API_BASE_URL}/server-info")
if response.status_code == 200:
return response.json()
return {}
except:
return {}
def upload_file_to_api(endpoint: str, file_data: bytes, filename: str):
"""Загрузка файла на API"""
try:
files = {"zip_file": (filename, file_data, "application/zip")}
response = requests.post(f"{API_BASE_URL}{endpoint}", files=files)
return response.json(), response.status_code
except Exception as e:
return {"error": str(e)}, 500
def make_api_request(endpoint: str, data: Dict[str, Any]):
"""Выполнение API запроса"""
try:
response = requests.post(f"{API_BASE_URL}{endpoint}", json=data)
return response.json(), response.status_code
except Exception as e:
return {"error": str(e)}, 500
def main():
st.title("🚀 NIN Excel Parsers API - Демонстрация")
st.markdown("---")
# Проверка доступности API
if not check_api_health():
st.error(f"❌ API недоступен по адресу {API_BASE_URL}")
st.info("Убедитесь, что FastAPI сервер запущен")
return
st.success(f"✅ API доступен по адресу {API_BASE_URL}")
# Боковая панель с информацией
with st.sidebar:
st.header(" Информация")
# Информация о сервере
server_info = get_server_info()
if server_info:
st.subheader("Сервер")
st.write(f"PID: {server_info.get('process_id', 'N/A')}")
st.write(f"CPU ядер: {server_info.get('cpu_cores', 'N/A')}")
st.write(f"Память: {server_info.get('memory_mb', 'N/A'):.1f} MB")
# Доступные парсеры
parsers = get_available_parsers()
if parsers:
st.subheader("Доступные парсеры")
for parser in parsers:
st.write(f"{parser}")
# Основные вкладки - по одной на каждый парсер
tab1, tab2, tab3 = st.tabs([
"📊 Сводки ПМ",
"🏭 Сводки СА",
"⛽ Мониторинг топлива"
])
# Вкладка 1: Сводки ПМ - полный функционал
with tab1:
st.header("📊 Сводки ПМ - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("svodka_pm")
# Секция загрузки файлов
st.subheader("📤 Загрузка файлов")
uploaded_pm = st.file_uploader(
"Выберите ZIP архив со сводками ПМ",
type=['zip'],
key="pm_upload"
)
if uploaded_pm is not None:
if st.button("📤 Загрузить сводки ПМ", key="upload_pm_btn"):
with st.spinner("Загружаю файл..."):
result, status = upload_file_to_api(
"/svodka_pm/upload-zip",
uploaded_pm.read(),
uploaded_pm.name
)
if status == 200:
st.success(f"{result.get('message', 'Файл загружен')}")
st.info(f"ID объекта: {result.get('object_id', 'N/A')}")
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
st.markdown("---")
# Секция получения данных
st.subheader("🔍 Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2)
with col1:
st.subheader("Данные по одному ОГ")
og_id = st.selectbox(
"Выберите ОГ",
["SNPZ", "KNPZ", "ANHK", "AchNPZ", "UNPZ", "UNH", "NOV",
"NovKuybNPZ", "KuybNPZ", "CyzNPZ", "TuapsNPZ", "RNPK",
"NVNPO", "KLNPZ", "PurNP", "YANOS"],
key="pm_single_og"
)
codes = st.multiselect(
"Выберите коды строк",
[78, 79, 394, 395, 396, 397, 81, 82, 83, 84],
default=[78, 79],
key="pm_single_codes"
)
columns = st.multiselect(
"Выберите столбцы",
["БП", "ПП", "СЭБ", "Факт", "План"],
default=["БП", "ПП"],
key="pm_single_columns"
)
if st.button("🔍 Получить данные по ОГ", key="pm_single_btn"):
if codes and columns:
with st.spinner("Получаю данные..."):
data = {
"getter": "single_og",
"id": og_id,
"codes": codes,
"columns": columns
}
result, status = make_api_request("/svodka_pm/get_data", data)
if status == 200:
st.success("✅ Данные получены")
st.json(result)
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
else:
st.warning("⚠️ Выберите коды и столбцы")
with col2:
st.subheader("Данные по всем ОГ")
codes_total = st.multiselect(
"Выберите коды строк",
[78, 79, 394, 395, 396, 397, 81, 82, 83, 84],
default=[78, 79, 394, 395],
key="pm_total_codes"
)
columns_total = st.multiselect(
"Выберите столбцы",
["БП", "ПП", "СЭБ", "Факт", "План"],
default=["БП", "ПП", "СЭБ"],
key="pm_total_columns"
)
if st.button("🔍 Получить данные по всем ОГ", key="pm_total_btn"):
if codes_total and columns_total:
with st.spinner("Получаю данные..."):
data = {
"getter": "total_ogs",
"codes": codes_total,
"columns": columns_total
}
result, status = make_api_request("/svodka_pm/get_data", data)
if status == 200:
st.success("✅ Данные получены")
st.json(result)
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
else:
st.warning("⚠️ Выберите коды и столбцы")
# Вкладка 2: Сводки СА - полный функционал
with tab2:
st.header("🏭 Сводки СА - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("svodka_ca")
# Секция загрузки файлов
st.subheader("📤 Загрузка файлов")
uploaded_ca = st.file_uploader(
"Выберите Excel файл сводки СА",
type=['xlsx', 'xlsm', 'xls'],
key="ca_upload"
)
if uploaded_ca is not None:
if st.button("📤 Загрузить сводку СА", key="upload_ca_btn"):
with st.spinner("Загружаю файл..."):
try:
files = {"file": (uploaded_ca.name, uploaded_ca.read(), "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")}
response = requests.post(f"{API_BASE_URL}/svodka_ca/upload", files=files)
result = response.json()
if response.status_code == 200:
st.success(f"{result.get('message', 'Файл загружен')}")
st.info(f"ID объекта: {result.get('object_id', 'N/A')}")
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
except Exception as e:
st.error(f"❌ Ошибка: {str(e)}")
st.markdown("---")
# Секция получения данных
st.subheader("🔍 Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2)
with col1:
st.subheader("Параметры запроса")
modes = st.multiselect(
"Выберите режимы",
["План", "Факт", "Норматив"],
default=["План", "Факт"],
key="ca_modes"
)
tables = st.multiselect(
"Выберите таблицы",
["ТиП", "Топливо", "Потери"],
default=["ТиП", "Топливо"],
key="ca_tables"
)
with col2:
st.subheader("Результат")
if st.button("🔍 Получить данные СА", key="ca_btn"):
if modes and tables:
with st.spinner("Получаю данные..."):
data = {
"getter": "get_data",
"modes": modes,
"tables": tables
}
result, status = make_api_request("/svodka_ca/get_data", data)
if status == 200:
st.success("✅ Данные получены")
st.json(result)
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
else:
st.warning("⚠️ Выберите режимы и таблицы")
# Вкладка 3: Мониторинг топлива - полный функционал
with tab3:
st.header("⛽ Мониторинг топлива - Полный функционал")
# Получаем информацию о геттерах
getters_info = get_parser_getters("monitoring_fuel")
# Секция загрузки файлов
st.subheader("📤 Загрузка файлов")
uploaded_fuel = st.file_uploader(
"Выберите ZIP архив с мониторингом топлива",
type=['zip'],
key="fuel_upload"
)
if uploaded_fuel is not None:
if st.button("📤 Загрузить мониторинг топлива", key="upload_fuel_btn"):
with st.spinner("Загружаю файл..."):
result, status = upload_file_to_api(
"/monitoring_fuel/upload-zip",
uploaded_fuel.read(),
uploaded_fuel.name
)
if status == 200:
st.success(f"{result.get('message', 'Файл загружен')}")
st.info(f"ID объекта: {result.get('object_id', 'N/A')}")
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
st.markdown("---")
# Секция получения данных
st.subheader("🔍 Получение данных")
# Показываем доступные геттеры
if getters_info and "getters" in getters_info:
st.info("📋 Доступные геттеры:")
for getter_name, getter_info in getters_info["getters"].items():
st.write(f"• **{getter_name}**: {getter_info.get('description', 'Нет описания')}")
st.write(f" - Обязательные параметры: {', '.join(getter_info.get('required_params', []))}")
if getter_info.get('optional_params'):
st.write(f" - Необязательные параметры: {', '.join(getter_info['optional_params'])}")
col1, col2 = st.columns(2)
with col1:
st.subheader("Агрегация по колонкам")
columns_fuel = st.multiselect(
"Выберите столбцы",
["normativ", "total", "total_1"],
default=["normativ", "total"],
key="fuel_columns"
)
if st.button("🔍 Получить агрегированные данные", key="fuel_total_btn"):
if columns_fuel:
with st.spinner("Получаю данные..."):
data = {
"getter": "total_by_columns",
"columns": columns_fuel
}
result, status = make_api_request("/monitoring_fuel/get_data", data)
if status == 200:
st.success("✅ Данные получены")
st.json(result)
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
else:
st.warning("⚠️ Выберите столбцы")
with col2:
st.subheader("Данные за месяц")
month = st.selectbox(
"Выберите месяц",
[f"{i:02d}" for i in range(1, 13)],
key="fuel_month"
)
if st.button("🔍 Получить данные за месяц", key="fuel_month_btn"):
with st.spinner("Получаю данные..."):
data = {
"getter": "month_by_code",
"month": month
}
result, status = make_api_request("/monitoring_fuel/get_data", data)
if status == 200:
st.success("✅ Данные получены")
st.json(result)
else:
st.error(f"❌ Ошибка: {result.get('message', 'Неизвестная ошибка')}")
# Футер
st.markdown("---")
st.markdown("### 📚 Документация API")
st.markdown(f"Полная документация доступна по адресу: {API_BASE_URL}/docs")
# Информация о проекте
with st.expander(" О проекте"):
st.markdown("""
**NIN Excel Parsers API** - это веб-сервис для парсинга и обработки Excel-файлов нефтеперерабатывающих заводов.
**Возможности:**
- 📊 Парсинг сводок ПМ (план и факт)
- 🏭 Парсинг сводок СА
- ⛽ Мониторинг топлива
**Технологии:**
- FastAPI
- Pandas
- MinIO (S3-совместимое хранилище)
- Streamlit (веб-интерфейс)
""")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,4 @@
streamlit>=1.28.0
requests>=2.31.0
pandas>=1.5.0
numpy>=1.24.0

View File

@@ -1,49 +0,0 @@
#!/usr/bin/env python3
"""
Скрипт для запуска проекта в режиме разработки
"""
import subprocess
import sys
import os
def run_command(command, description):
"""Выполнение команды с выводом"""
print(f"🔄 {description}...")
try:
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(f"{description} выполнено успешно")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Ошибка при {description.lower()}:")
print(f" Команда: {command}")
print(f" Ошибка: {e.stderr}")
return False
def main():
print("🚀 Запуск проекта в режиме разработки")
print("=" * 50)
# Останавливаем продакшн контейнеры если они запущены
if run_command("docker compose ps", "Проверка статуса контейнеров"):
if "Up" in subprocess.run("docker compose ps", shell=True, capture_output=True, text=True).stdout:
print("🛑 Останавливаю продакшн контейнеры...")
run_command("docker compose down", "Остановка продакшн контейнеров")
# Запускаем режим разработки
print("\n🔧 Запуск режима разработки...")
if run_command("docker compose -f docker-compose.dev.yml up -d", "Запуск контейнеров разработки"):
print("\n🎉 Проект запущен в режиме разработки!")
print("\n📍 Доступные сервисы:")
print(" • Streamlit: http://localhost:8501")
print(" • FastAPI: http://localhost:8000")
print(" • MinIO Console: http://localhost:9001")
print("\n💡 Теперь изменения в streamlit_app/ будут автоматически перезагружаться!")
print("\n🛑 Для остановки используйте:")
print(" docker compose -f docker-compose.dev.yml down")
else:
print("\nНе удалось запустить проект в режиме разработки")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,49 +0,0 @@
#!/usr/bin/env python3
"""
Скрипт для запуска проекта в продакшн режиме
"""
import subprocess
import sys
def run_command(command, description):
"""Выполнение команды с выводом"""
print(f"🔄 {description}...")
try:
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(f"{description} выполнено успешно")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Ошибка при {description.lower()}:")
print(f" Команда: {command}")
print(f" Ошибка: {e.stderr}")
return False
def main():
print("🚀 Запуск проекта в продакшн режиме")
print("=" * 50)
# Останавливаем контейнеры разработки если они запущены
if run_command("docker compose -f docker-compose.dev.yml ps", "Проверка статуса контейнеров разработки"):
if "Up" in subprocess.run("docker compose -f docker-compose.dev.yml ps", shell=True, capture_output=True, text=True).stdout:
print("🛑 Останавливаю контейнеры разработки...")
run_command("docker compose -f docker-compose.dev.yml down", "Остановка контейнеров разработки")
# Запускаем продакшн режим
print("\n🏭 Запуск продакшн режима...")
if run_command("docker compose up -d --build", "Запуск продакшн контейнеров"):
print("\n🎉 Проект запущен в продакшн режиме!")
print("\n📍 Доступные сервисы:")
print(" • Streamlit: http://localhost:8501")
print(" • FastAPI: http://localhost:8000")
print(" • MinIO Console: http://localhost:9001")
print("\n💡 Для разработки используйте:")
print(" python start_dev.py")
print("\n🛑 Для остановки используйте:")
print(" docker compose down")
else:
print("\nНе удалось запустить проект в продакшн режиме")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,15 +0,0 @@
[server]
port = 8501
address = "0.0.0.0"
enableCORS = false
enableXsrfProtection = false
[browser]
gatherUsageStats = false
[theme]
primaryColor = "#FF4B4B"
backgroundColor = "#FFFFFF"
secondaryBackgroundColor = "#F0F2F6"
textColor = "#262730"
font = "sans serif"

View File

@@ -1,23 +0,0 @@
FROM python:3.11-slim
WORKDIR /app
# Установка системных зависимостей
RUN apt-get update && apt-get install -y \
gcc \
&& rm -rf /var/lib/apt/lists/*
# Копирование requirements.txt
COPY requirements.txt .
# Установка Python зависимостей
RUN pip install --no-cache-dir -r requirements.txt
# Копирование кода приложения
COPY . .
# Открытие порта
EXPOSE 8501
# Запуск Streamlit
CMD ["streamlit", "run", "streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]

View File

@@ -1,100 +0,0 @@
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from minio import Minio
import os
from io import BytesIO
# Конфигурация страницы
st.set_page_config(
page_title="Сводка данных",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Заголовок приложения
st.title("📊 Анализ данных сводки")
st.markdown("---")
# Инициализация MinIO клиента
@st.cache_resource
def init_minio_client():
try:
client = Minio(
os.getenv("MINIO_ENDPOINT", "localhost:9000"),
access_key=os.getenv("MINIO_ACCESS_KEY", "minioadmin"),
secret_key=os.getenv("MINIO_SECRET_KEY", "minioadmin"),
secure=os.getenv("MINIO_SECURE", "false").lower() == "true"
)
return client
except Exception as e:
st.error(f"Ошибка подключения к MinIO: {e}")
return None
# Боковая панель
with st.sidebar:
st.header("⚙️ Настройки")
# Выбор типа данных
data_type = st.selectbox(
"Тип данных",
["Мониторинг топлива", "Сводка ПМ", "Сводка ЦА"]
)
# Выбор периода
period = st.date_input(
"Период",
value=pd.Timestamp.now().date()
)
st.markdown("---")
st.markdown("### 📈 Статистика")
st.info("Выберите тип данных для анализа")
# Основной контент
col1, col2 = st.columns([2, 1])
with col1:
st.subheader(f"📋 {data_type}")
if data_type == "Мониторинг топлива":
st.info("Анализ данных мониторинга топлива")
# Здесь будет логика для работы с данными мониторинга топлива
elif data_type == "Сводка ПМ":
st.info("Анализ данных сводки ПМ")
# Здесь будет логика для работы с данными сводки ПМ
elif data_type == "Сводка ЦА":
st.info("Анализ данных сводки ЦА")
# Здесь будет логика для работы с данными сводки ЦА
with col2:
st.subheader("📊 Быстрая статистика")
st.metric("Всего записей", "0")
st.metric("Активных", "0")
st.metric("Ошибок", "0")
# Нижняя панель
st.markdown("---")
st.subheader("🔍 Детальный анализ")
# Заглушка для графиков
placeholder = st.empty()
with placeholder.container():
col1, col2 = st.columns(2)
with col1:
st.write("📈 График 1")
# Здесь будет график
with col2:
st.write("📊 График 2")
# Здесь будет график
# Футер
st.markdown("---")
st.markdown("**Разработано для анализа данных сводки** | v1.0.0")

View File

@@ -1,7 +0,0 @@
streamlit>=1.28.0
pandas>=2.0.0
numpy>=1.24.0
plotly>=5.15.0
minio>=7.1.0
openpyxl>=3.1.0
xlrd>=2.0.1